
Artificial Neural Networks

INTRODUCTION DECIDING LEARNING CORRECTNESS

Learning Model

NEURAL
NETWORKS

MODEL CLASSES

MAPS LINESDYNAMIC
SYSTEMS

FUNCTIONSRELATIONS

ModelLearning

LEARNING ALGORITHMS

MACHINE LEARNING

LINEAR
REGRESSION

K-MEANSBACK-
PROPAGATION

SYSTEM IDENTIFICATION

What is an Artificial
Neural Network (ANN)?

What is an Artificial
Neural Network (ANN)?

An ANN is a universal
function approximator

//
Deep Learning

AN ANN WITH MORE NEURONS AND MORE LAYERS

Problems solved with Neural
Networks

CLASSIFICATION CLUSTERING REGRESSION

IMAGES RECOGNITION

Handwritten letters
Faces

AUDIO RECOGNITION

Speech

PATTERN RECOGNITION

Spam

GROUPING

Customers by similar
characteristics

Geographic distances
together for deliveries

PREDICTION

Stock picking

income based based on
location

airline passengers based
on the time of year

STEP 1

Define the input

STEP 2

Define the topology of the neural net  
(i.e., the layers of neurons and their connections)

STEP 3

Train the neural net on examples of the problem

STEP 4

Run the trained neural net to solve new examples
of the problem

ANN Implementation Overview

MODEL

TRAINING
THE MODEL

PROBLEM FORMULATION

ALGORITHMIC SOLUTION

REPRESENTATION INTERPRETATION

PROBLEM
DOMAIN

RANGE OF
POSSIBLE ANSWERS

PROBLEM
DATA

RESULT

INSTANCES SOLUTION
INSTANCE

ALGORITHM

COMPUTATIONAL
MODEL

DecidingLearning

DecidingLearning

INTRODUCTION DECIDING LEARNING CORRECTNESS

Decision Making

IMAGE

GAVIN
ANDRE

BEN
RYAN
()

Decision Making

IMAGE

2D ARRAY
OF VALUES

()
0.1 0.5 0.3 0.1

0.1 0.9 0.7 0.1

0.5 0.5 0.8 0.1

0.1 0.6 0.3 0.6

0.1 0.8 0.8 0.1

Decision Making

GAVIN
ANDRE

BEN
RYAN

IMAGE

()

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE GAVIN

ANDRE
BEN

RYAN

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

IMAGE

INPUT LAYER OF
NEURONS

()

Decision Making

GAVIN
ANDRE

BEN
RYAN

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

MODEL: ANN

()

Decision Making
IMAGE

INPUT LAYER OF
NEURONS

GAVIN
ANDRE

BEN
RYAN

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

FORWARD-
PROPAGATION

MODEL: ANN

()

Decision Making
IMAGE

INPUT LAYER OF
NEURONS

GAVIN
ANDRE

BEN
RYAN

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

OUTPUT
NEURON

FORWARD-
PROPAGATION

MODEL: ANN

()

Decision Making
IMAGE

INPUT LAYER OF
NEURONS

GAVIN
ANDRE

BEN
RYAN

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

OUTPUT
NEURON

FORWARD-
PROPAGATION

MODEL: ANN

()

Decision Making
IMAGE

INPUT LAYER OF
NEURONS

GAVIN
ANDRE

BEN
RYAN

How does it work?

Biological Neuron Artificial Neuron

Biological Neuron Artificial Neuron

Biological Neuron Artificial Neuron

A

B

C

X

Y

Z

OUTPUT

Artificial Neuron

A

B

C

OUTPUTINPUTS

WEIGHTS

X

Y

Z

Artificial Neuron

A B C OUTPUTX Y Z =+ +

INPUTS

WEIGHTS

Artificial Neuron

A B C OUTPUTX Y Z =+ +

INPUTS

WEIGHTS

()σ

Artificial Neuron

A B C OUTPUTX Y Z =+ +

INPUTS

WEIGHTS

()σ

SIGMOID FUNCTION

Artificial Neuron

A B C OUTPUTX Y Z =+ +

INPUTS

WEIGHTS

()σ

Artificial Neuron

A B C OUTPUTX Y Z =+ +

INPUTS

WEIGHTS

()σ

RELU FUNCTION

Artificial Neuron

A B C OUTPUTX Y Z =+ +

INPUTS

WEIGHTS

()R

RELU FUNCTION

Artificial Neuron

A B CX Y Z+ +

INPUTS

WEIGHTS

(OUTPUT=)R

Artificial Neuron

A B CX Y Z+ +

INPUTS

WEIGHTS

(OUTPUT=)R

Artificial Neuron

A B CX Y Z+ +

INPUTS

WEIGHTS

(OUTPUT=)R BIAS+

Artificial Neuron

INPUTS

WEIGHTS

A B CX Y Z+ +(OUTPUT=)R BIAS+

Artificial Neuron

INPUTS

WEIGHTS

= ACTIVATION FUNCTIONA B CX Y Z+ +(OUTPUT=)R BIAS+

Artificial Neuron

INPUTS

WEIGHTS

= ACTIVATION FUNCTIONA B CX Y Z+ +(OUTPUT=)R BIAS+

Artificial Neuron

ACTIVATED NOT ACTIVATED

BASED ON THE INPUT VALUE, THE WEIGHTS, AND THE BIAS

Building the network

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

HIDDEN LAYERS OF NEURONS

OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

HIDDEN LAYERS OF NEURONS

HIDDEN LAYERS OF NEURONS OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

HIDDEN LAYERS OF NEURONS OUTPUT

WEIGHTED CONNECTIONS

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

HIDDEN LAYERS OF NEURONS OUTPUT

WEIGHTED CONNECTIONS

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

HIDDEN LAYERS OF NEURONS OUTPUT

FORWARD-PROPAGATION

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

HIDDEN LAYERS OF NEURONS OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

FORWARD-PROPAGATION

HIDDEN LAYERS OF NEURONS OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

FORWARD-PROPAGATION

a0(0)a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

Simplified Notation

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

SIGMOID

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

SIGMOID

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

SIGMOID

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

SIGMOID

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

biasbias

SIGMOID

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bias

bn

bias

…

…

…

…

SIGMOID

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

SIGMOID

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bias

bn

bias

…

…

…

…

σ

σ

Simplified Notation

+(Output=)bias+

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5a0(0) a1(0) a2(0) a4(0)a3(0) a5(0)+ + + +

SIGMOID

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bias

bn

bias

…

…

…

…

σ

σ

Simplified Notation

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bn

bias

…

…

…

…

σ

W

Simplified Notation

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bn

bias

…

…

…

…

σ

W a(0)

Simplified Notation

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bn

bias

…

…

…

…

σ

W a(0) + B

Simplified Notation

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5

wk,0 wk,1 wk,2 wk,3 wk,4 wk,5

…

…

…

…

+

b1

bn

bias

…

…

…

…

σ

σ ()W a(0) + B

Simplified Notation

w0,0

w0,1

w0,2

w0,3

w0,4

w0,5

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

a0(0)

a1(0)

a2(0)

a4(0)

a3(0)

a5(0)

σ ()W a(0) + B

HIDDEN LAYERS OF NEURONS OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

FORWARD-PROPAGATION

Larger Neural Networks can represent
more complicated functions.

3
HIDDEN NEURONS

6
HIDDEN NEURONS

20
HIDDEN NEURONS

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

OUTPUT
NEURON

FORWARD-
PROPAGATION

MODEL: ANN

()

Decision Making
IMAGE

INPUT LAYER OF
NEURONS

GAVIN
ANDRE

BEN
RYAN

Deciding

DecidingLearning

INTRODUCTION DECIDING LEARNING CORRECTNESS

STEP 1

Define the input

STEP 2

Define the topology of the neural net  
(i.e., the layers of neurons and their connections)

STEP 3

Train the neural net on examples of the problem

STEP 4

Run the trained neural net to solve new examples
of the problem

ANN Implementation Overview

MODEL

TRAINING
THE MODEL

Learning

TRAINING DATA

f(X)

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

TRAINING DATA

f(X)

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

TRAINING DATA

f(X)

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

HIDDEN LAYERS OF NEURONSINPUT LAYER OF ANN

OUTPUT
VALUE

Y1

Y2

Y3

Y4

Z1

Z2

Z3

Z4

–

–

–

–

DESIRED
RESULT

NORMS (COST FUNCTION)

Cost Function
COST FUNCTION

Looks at the outputs generated by the
neural net and compares it to what the
results should be

A neural net that produces an answer
close to the desired answer will have a
lower cost

GOAL

Find which weights and biases will
minimize the cost function output,
known as gradient descent

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA

ACCORDING TO OUR NORM

TRAINING DATA

f(X)

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA

ACCORDING TO OUR NORM

TRAINING DATA

f(X)

ANN WITH INITIAL
WEIGHTS

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA

ACCORDING TO OUR NORM

TRAINING DATA

f(X)

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA

ACCORDING TO OUR NORM

TRAINING DATA

f(X)

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

Sums up the total cost of each output:

Computes partial derivatives of of the total cost
function with respect to any weight w or bias b in the
network.

Applies small changes to the weights and biases in
each layer.

Automatically adjusts the weights between each set of
data. No manual tuning required

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA

ACCORDING TO OUR NORM

TRAINING DATA

f(X)

ANN WITH TUNED
WEIGHTS

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

Learning
BUCKET OF MODELS

NORMS (COST FUNCTION)

MODEL
INSTANCE

STEP 1

Generate population of n random initial sets of weights and biases.
Known as species.

STEP 2

Evaluate the fitness of each species in that population
(time limit, lowest cost achieved, etc.)

STEP 3 - REPEAT THE FOLLOWING

a. Select the best-fit individuals for reproduction. (Parents)
b. Breed a new generation of new species

through crossover and mutation.
c. Evaluate the individual fitness of new individuals.
d. Replace least-fit population with new individuals.

Over time, this process selects the best set of weights and biases it
can, finding a local minimum of the function and reducing error

Using Evolutionary Algorithms in ANNs

https://en.wikipedia.org/wiki/Fitness_function

DecidingLearning

INTRODUCTION DECIDING LEARNING CORRECTNESS

DecidingLearning

TRAINING DATA

f(X)

ANN WITH TUNED
WEIGHTS

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

BUCKET OF MODELS

NORMS (COST FUNCTION)

TRAINING DATA

f(X)

ANN WITH TUNED
WEIGHTS

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

BUCKET OF MODELS

NORMS (COST FUNCTION)

GAVIN
ANDRE

BEN
RYAN

OUTPUT
NEURON

FORWARD-
PROPAGATION

()

TRAINING DATA

f(X)

ANN WITH TUNED
WEIGHTS

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

BUCKET OF MODELS

NORMS (COST FUNCTION)

GAVIN
ANDRE

BEN
RYAN

OUTPUT
NEURON

FORWARD-
PROPAGATION

()
CORRECTNESS CORRECTNESS

TRAINING DATA

f(X)

ANN WITH TUNED
WEIGHTS

BACK-
PROPAGATION

ANN WITH INITIAL
WEIGHTS

BUCKET OF MODELS

NORMS (COST FUNCTION)

GAVIN
ANDRE

BEN
RYAN

OUTPUT
NEURON

FORWARD-
PROPAGATION

()
CORRECTNESSCORRECTNESS

HIDDEN LAYERS OF NEURONS
OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

A feed-forward network with a single
hidden layer containing a finite number of
neurons can approximate continuous
functions on compact subsets of Rn, under
mild assumptions on the activation
function.

Universal approximation theorem

The theorem in mathematical terms:

HIDDEN LAYERS OF NEURONS
OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

Universal approximation theorem

UAT AND ANN CORRECTNESS SIMPLIFIED

Any continuous function can be
approximated by an ANN with a finite
number of neurons

WHAT WE LEARN FROM ANN CORRECTNESS

A correct result can’t be guaranteed
A ‘Good’ result is guaranteed to be
possible

“A feedforward network with a single layer is sufficient to
represent any function, but the layer may be infeasibly
large and may fail to learn and generalize correctly.”

— Ian Goodfellow

• Tensor Flow
• Pytorch
• MXNet
• Caffe
• Theano
• Amazon Machine Learning

Resources

APPENDIX

"Little more than speculation and wishful thinking ties
the actual work in AI to the mysterious workings of

the human mind.”
—Jerry Kaplan, an AI professor at Stanford University

TOO NEAT

Human-built networks prioritize mathematical elegance and power. Brains do not.

TOO SIMPLE

One neuron in the brain is as complex as a supercomputer

TOO FEW

Number of neurons in the brain is roughly equivalent to number of stars in the galaxy
(about 85 Billion) Each Neuron is wired to 1000 others. About 85 trillion connections
synapses.

TOO DRY

ANN researchers typically ignore biophysics

Comparison between ANNs and Brains

Biological Neuron
Network

Artificial Neuron
Network

Purely feedforward. Brains contain feedback
connections in various directions, but each on
his strictly one-way

Number of neurons in the brain is roughly
equivalent to number of stars in the galaxy
(about 100 Billion)

Each Neuron is wired to 1000 others. About 100
trillion connections (synapses)

Can apply back-propagation

Top-down
organization

Bottom-up
organization

Where the computational procedure is
constructed according to some well-
defined and clearly understood
computational procedure, where this
procedure provides a clear cut solution
to some problem at hand. (Euclid’s
Algorithm)

Clearly defined rules are not specified
in advance, but instead there is a
procedure laid down for the way that
the system is to ‘learn’ and to improve
its performance according to its
‘experience”. Thus the rules are subject
to continual modification. (Comparing
results of algorithm to correct answers
as in ANNs)

AKA GOFAI NOUVELLE AI

Serial Architecture Parallel Architecture
STEP-BY STEP DOES MANY INDEPENDENT

COMPUTATIONS SIMULTANEOUSLY.

1 2 3 1 2C 3

2B

2A

2D

2E

HIDDEN LAYERS OF NEURONS
OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

For every function there exists an ANN
with some hidden layer that approximates
that function.

Assumes that you can have an infinite
number of neurons.

We know of no way of determining the
Model of the hidden layers in the neural
networks.

Universal approximation theorem

