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An ANN is a universal 
function approximator
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STEP 1 

Define the input 

STEP 2 

Define the topology of the neural net  
(i.e., the layers of neurons and their connections) 

STEP 3 

Train the neural net on examples of the problem 
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Run the trained neural net to solve new examples 
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Larger Neural Networks can represent 
more complicated functions.

3  
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STEP 1 

Define the input 

STEP 2 

Define the topology of the neural net  
(i.e., the layers of neurons and their connections) 

STEP 3 

Train the neural net on examples of the problem 

STEP 4 

Run the trained neural net to solve new examples 
of the problem

ANN Implementation Overview
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Cost Function
COST FUNCTION 

Looks at the outputs generated by the 
neural net and compares it to what the 
results should be 

A neural net that produces an answer 
close to the desired answer will have a 
lower cost 

GOAL 

Find which weights and biases will 
minimize the cost function output, 
known as gradient descent
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MODEL 
INSTANCE

Sums up the total cost of each output: 

Computes partial derivatives of of the total cost 
function with respect to any weight w or bias b in the 
network.  

Applies small changes to the weights and biases in 
each layer. 

Automatically adjusts the weights between each set of 
data.  No manual tuning required
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STEP 1  

Generate population of n random initial sets of weights and biases. 
Known as species. 

STEP 2 

Evaluate the fitness of each species in that population  
(time limit, lowest cost achieved, etc.) 

STEP 3 - REPEAT THE FOLLOWING 

a. Select the best-fit individuals for reproduction. (Parents) 
b. Breed a new generation of new species 

through crossover and mutation. 
c. Evaluate the individual fitness of new individuals. 
d. Replace least-fit population with new individuals. 

Over time, this process selects the best set of weights and biases it 
can, finding a local minimum of the function and reducing error

Using Evolutionary Algorithms in ANNs

https://en.wikipedia.org/wiki/Fitness_function
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A feed-forward network with a single 
hidden layer containing a finite number of 
neurons can approximate continuous 
functions on compact subsets of Rn, under 
mild assumptions on the activation 
function.

Universal approximation theorem



The theorem in mathematical terms:
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Universal approximation theorem

UAT AND ANN CORRECTNESS SIMPLIFIED 

Any continuous function can be 
approximated by an ANN with a finite 
number of neurons 

WHAT WE LEARN FROM ANN CORRECTNESS

A correct result can’t be guaranteed 
A ‘Good’ result is guaranteed to be 
possible



“A feedforward network with a single layer is sufficient to 
represent any function, but the layer may be infeasibly 
large and may fail to learn and generalize correctly.” 

— Ian Goodfellow 



• Tensor Flow 
• Pytorch 
• MXNet 
• Caffe 
• Theano 
• Amazon Machine Learning

Resources
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"Little more than speculation and wishful thinking ties 
the actual work in AI to the mysterious workings of 

the human mind.” 
—Jerry Kaplan, an AI professor at Stanford University



TOO NEAT 

Human-built networks prioritize mathematical elegance and power. Brains do not. 

TOO SIMPLE 

One neuron in the brain is as complex as a supercomputer 

TOO FEW 

Number of neurons in the brain is roughly equivalent to number of stars in the galaxy 
(about 85 Billion) Each Neuron is wired to 1000 others. About 85 trillion connections 
synapses. 

TOO DRY 

ANN researchers typically ignore biophysics

Comparison between ANNs and Brains



Biological Neuron 
Network

Artificial Neuron 
Network

Purely feedforward. Brains contain feedback 
connections in various directions, but each on 
his strictly one-way 

Number of neurons in the brain is roughly 
equivalent to number of stars in the galaxy 
(about 100 Billion) 

Each Neuron is wired to 1000 others. About 100 
trillion connections (synapses) 

Can apply back-propagation 



Top-down 
organization

Bottom-up 
organization

Where the computational procedure is 
constructed according to some well-
defined and clearly understood 
computational procedure, where this 
procedure provides a clear cut solution 
to some problem at hand. (Euclid’s 
Algorithm)

Clearly defined rules are not specified 
in advance, but instead there is a 
procedure laid down for the way that 
the system is to ‘learn’ and to improve 
its performance according to its 
‘experience”. Thus the rules are subject 
to continual modification. (Comparing 
results of algorithm to correct answers 
as in ANNs)

AKA GOFAI NOUVELLE AI



Serial Architecture Parallel Architecture
STEP-BY STEP DOES MANY INDEPENDENT 

COMPUTATIONS SIMULTANEOUSLY.

1 2 3 1 2C 3

2B

2A

2D

2E



HIDDEN LAYERS OF NEURONS
OUTPUT

ANDRE

GAVIN

RYAN

BEN

INPUT LAYER OF ANN

For every function there exists an ANN 
with some hidden layer that approximates 
that function. 

Assumes that you can have an infinite 
number of neurons. 

We know of no way of determining the 
Model of the hidden layers in the neural 
networks. 

Universal approximation theorem


