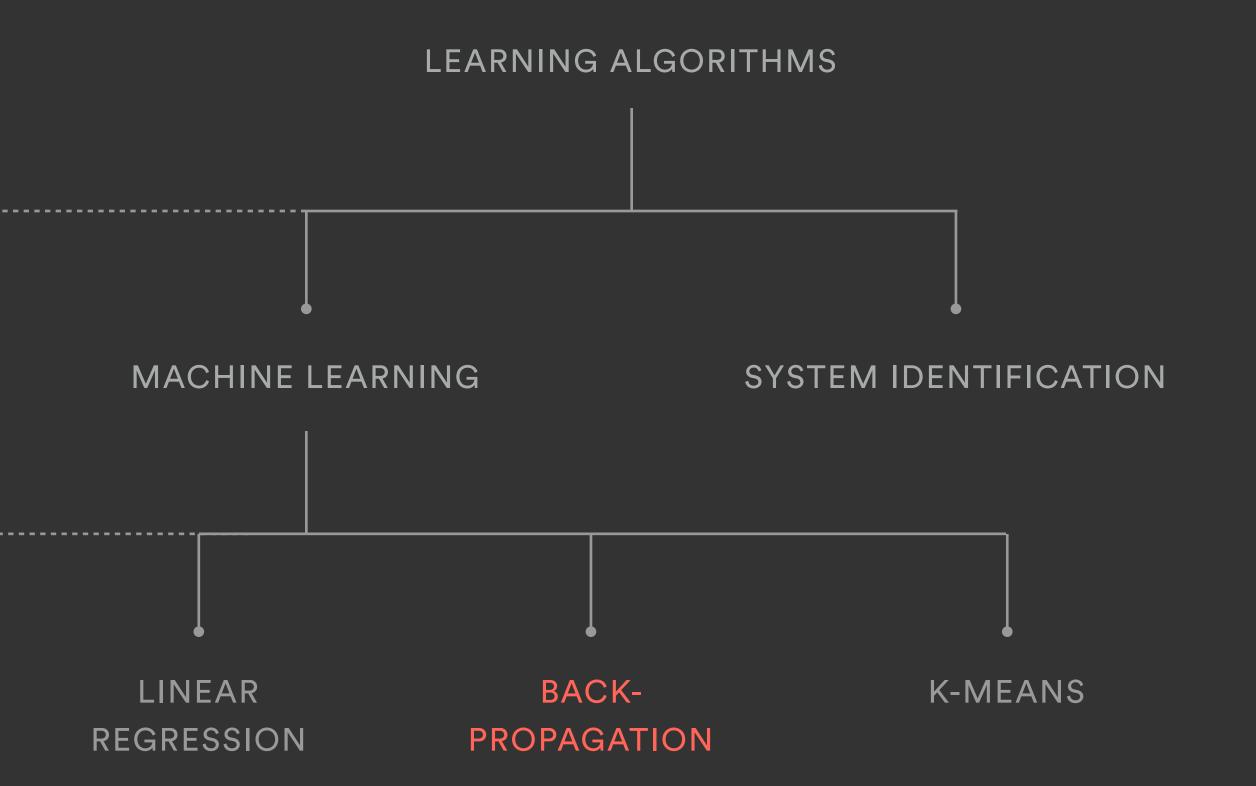
Artificial Neural Networks

INTRODUCTION DECIDING LEARNING CORRECTNESS

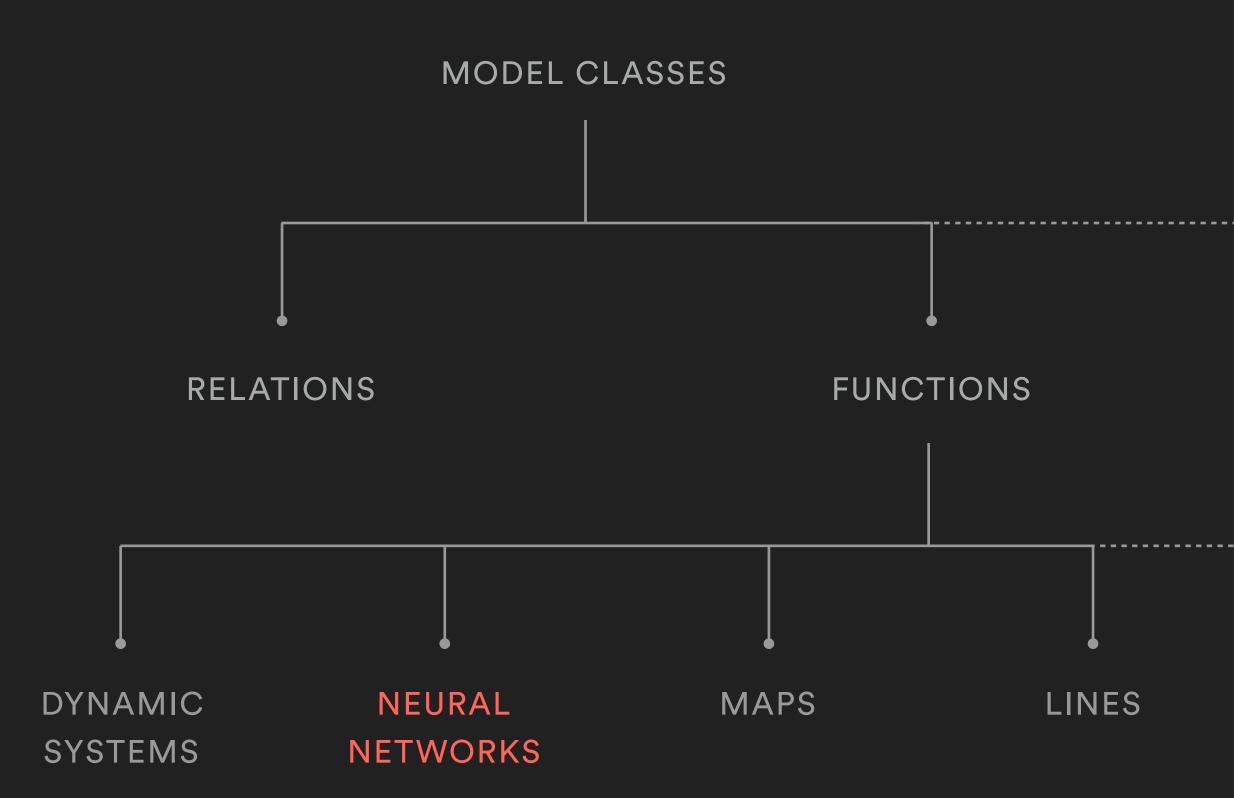
Learning

Model

Learning



Model



What is an Artificial Neural Network (ANN)?

What is an Artificial Neural Network (ANN)?

An ANN is a universal function approximator

Deep Learning

AN ANN WITH MORE NEURONS AND MORE LAYERS

Problems solved with Neural Networks

CLASSIFICATION

IMAGES RECOGNITION

Handwritten letters

Faces

AUDIO RECOGNITION

Speech

PATTERN RECOGNITION

Spam

CLUSTERING

GROUPING

Customers by similar characteristics

Geographic distances together for deliveries

REGRESSION

PREDICTION

Stock picking

income based based on location

airline passengers based on the time of year

Visually similar results



Free shipping and returns on Burberry Brit 'Irwin'...

Reebok

Theory Leather Bomber Jacket

bombers jackets

john varvatos

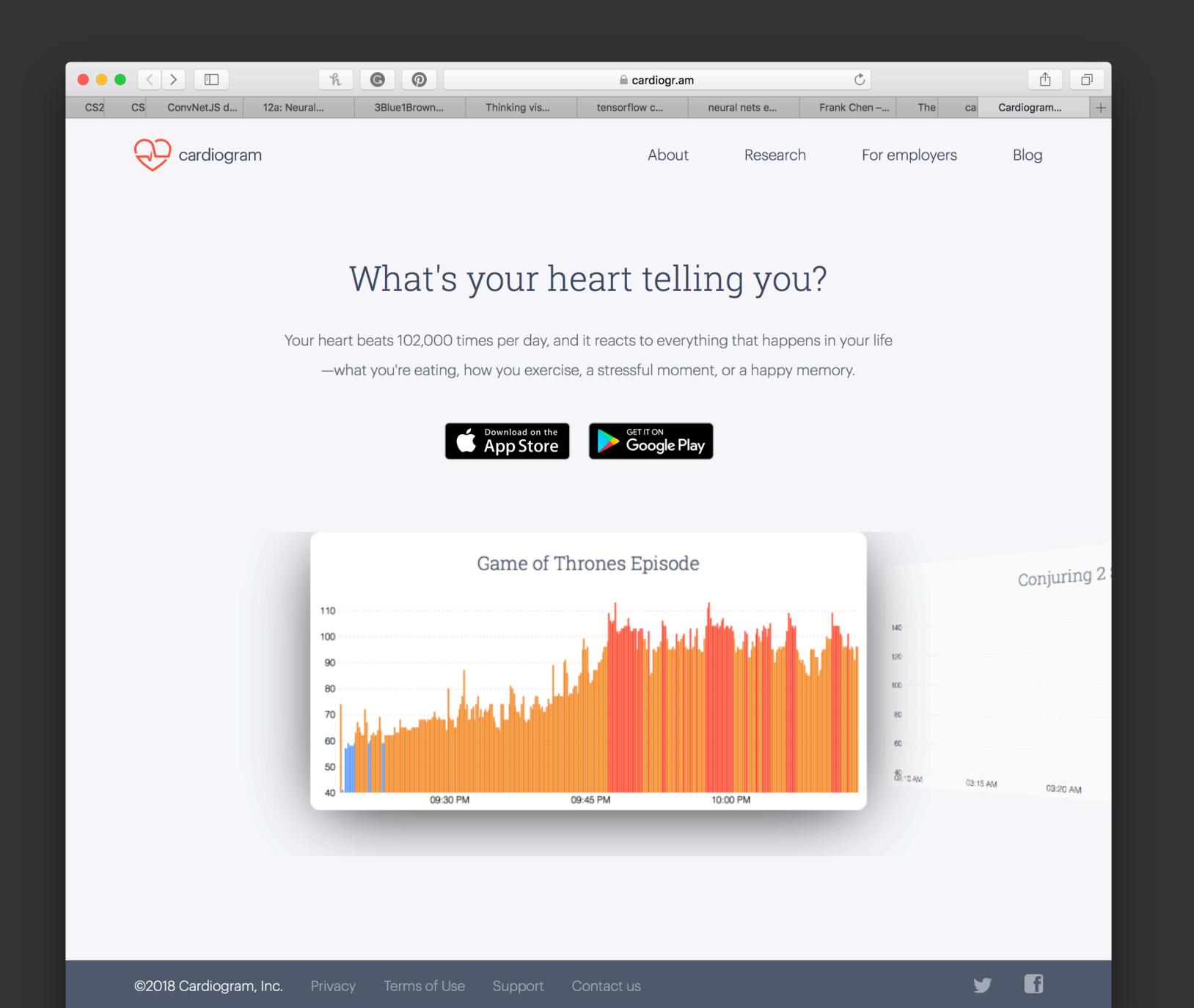
bomber

Collar Parka

Jacket

BOSS Black 'Cosey' Trim Fit Jacket available at... #Nordstrom

Pistel Whip Striped Hoodie



D.I.Y. ARTIFICIAL INTELLIGENCE COMES TO A JAPANESE FAMILY FARM

Q Search or enter website name

1 1

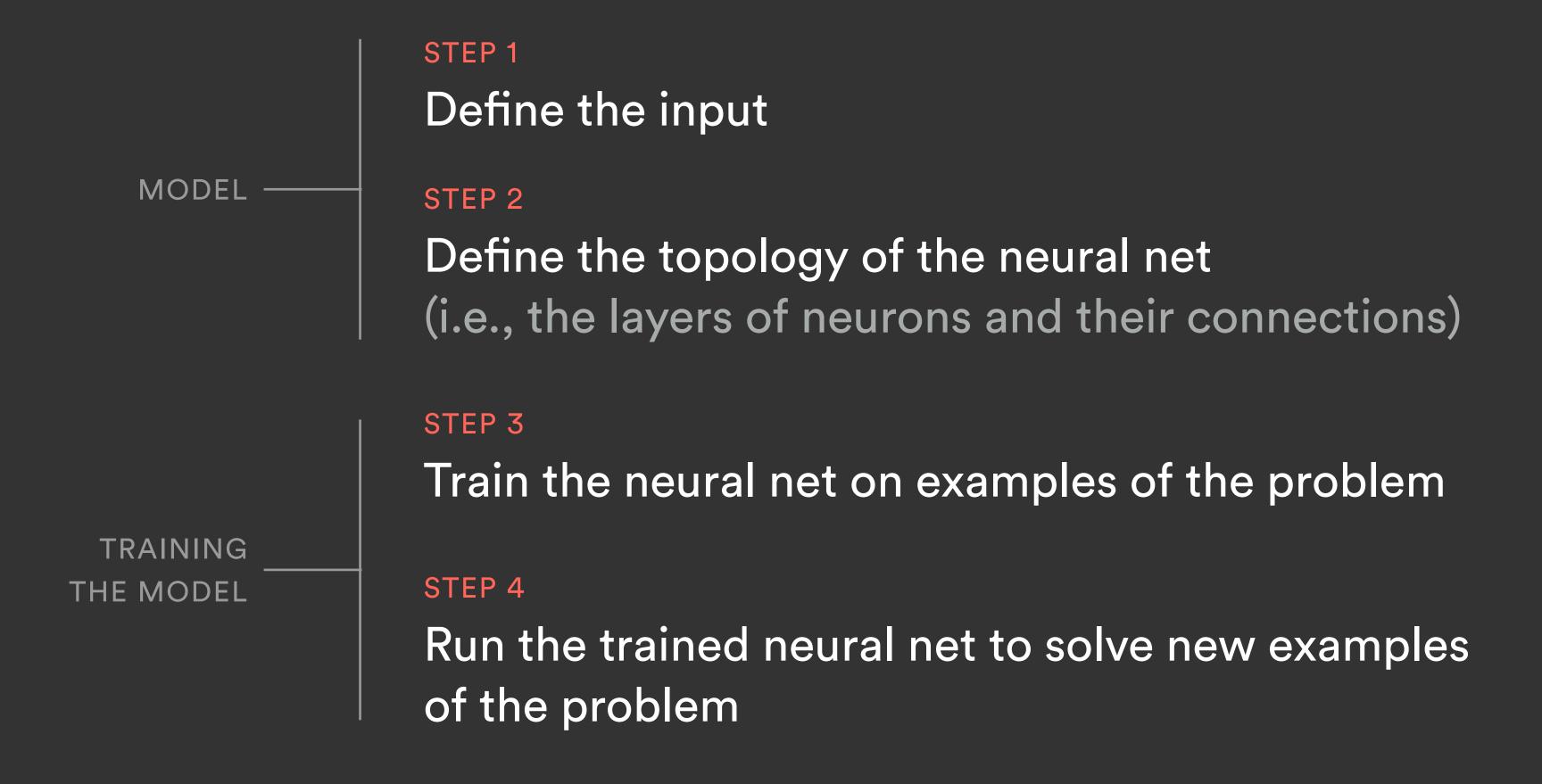
By Amos Zeeberg August 10, 2017

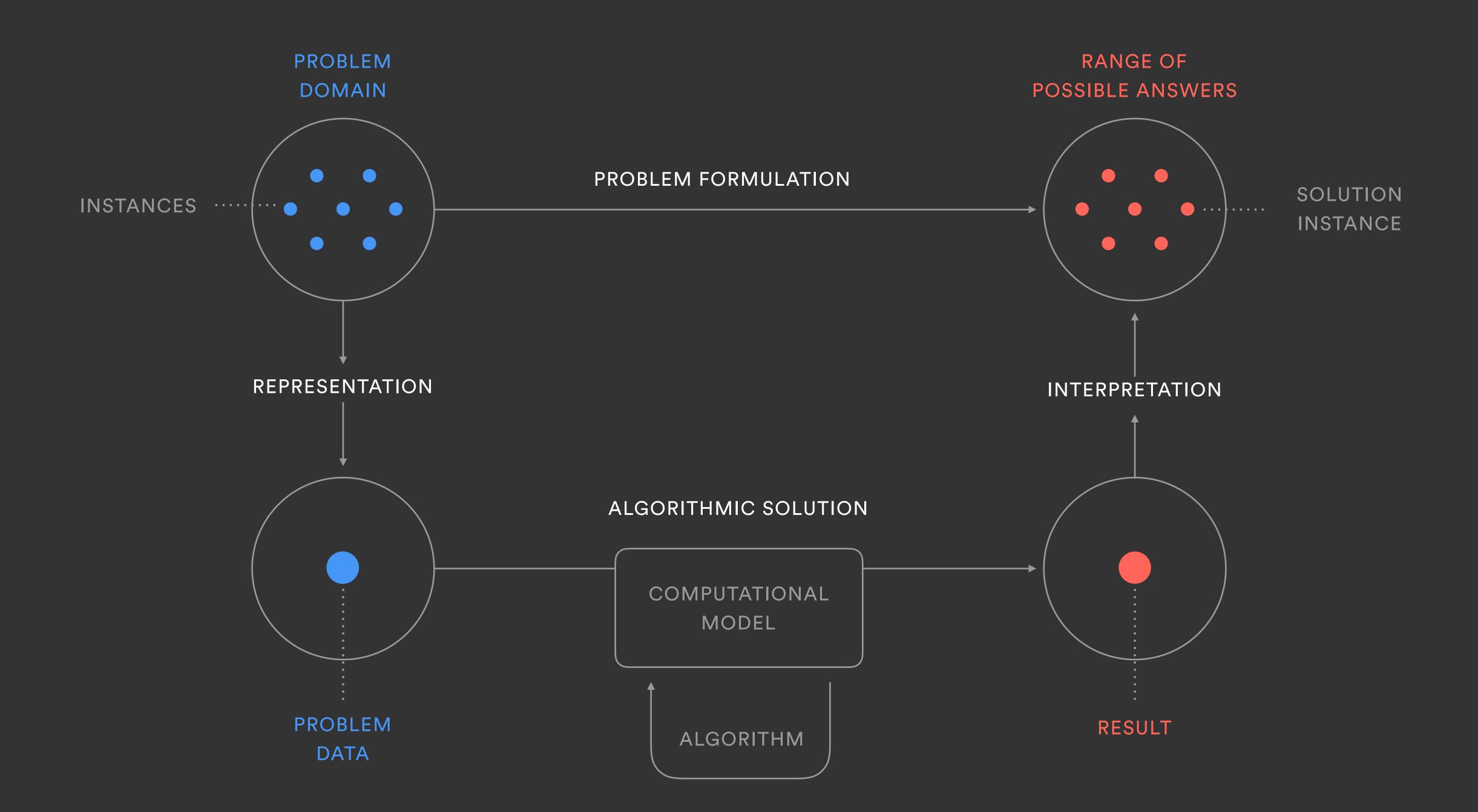
For decades, Makoto Koike's mother has been sorting cucumbers by hand. Now he is trying to teach a machine to replace her.

Photograph by Yagi Studio / Getty

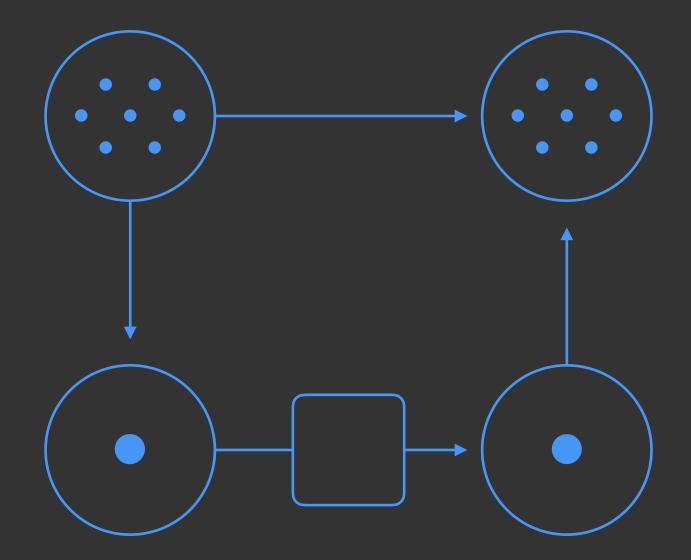
ot much about Makoto Koike's adult life suggests that he would be a farmer. Trained as an engineer, he spent most of his career in a busy urban section of Aichi Prefecture, Japan, near the headquarters of the Toyota Motor Corporation, writing software to control cars. Koike's

ANN Implementation Overview

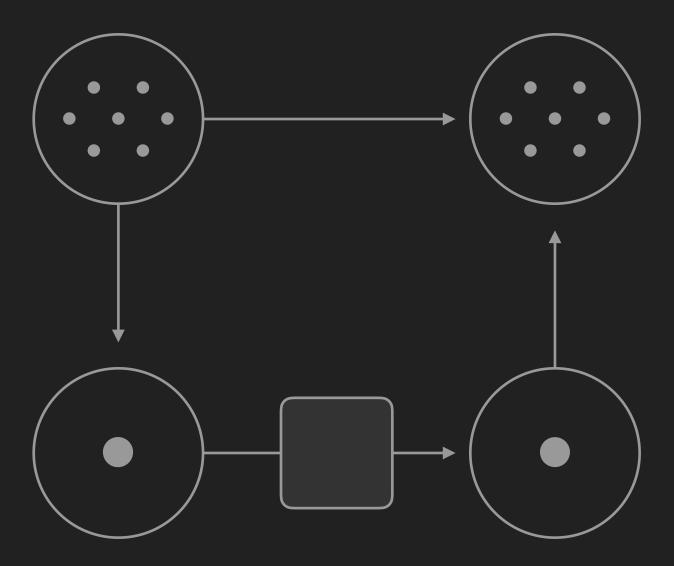




Learning

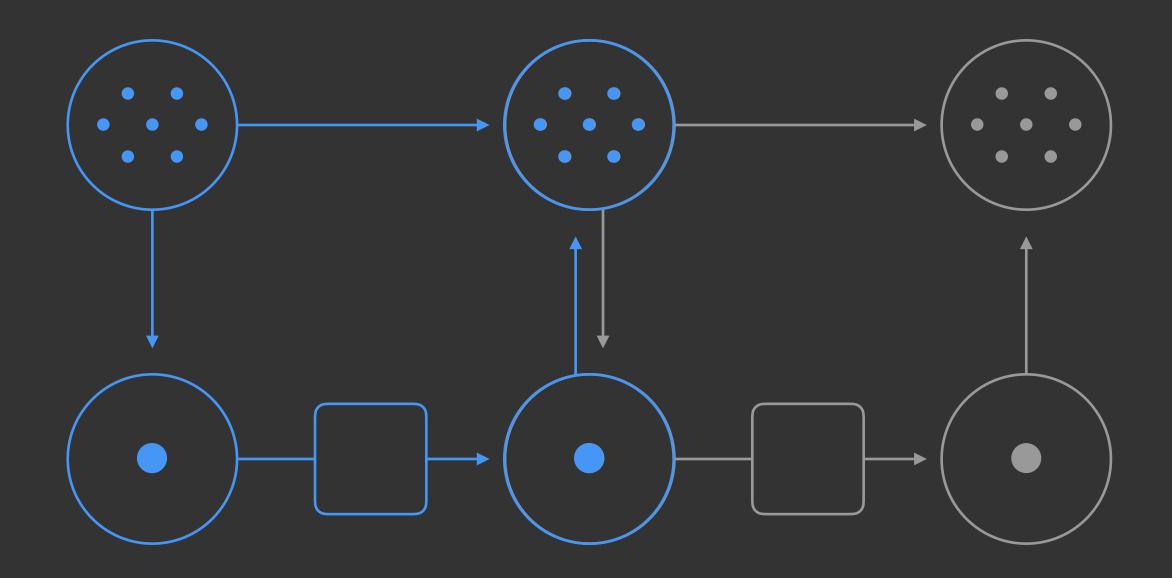


Deciding

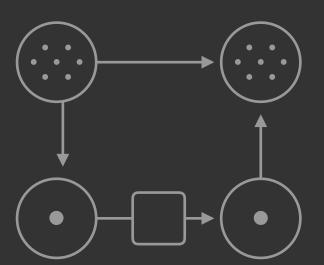


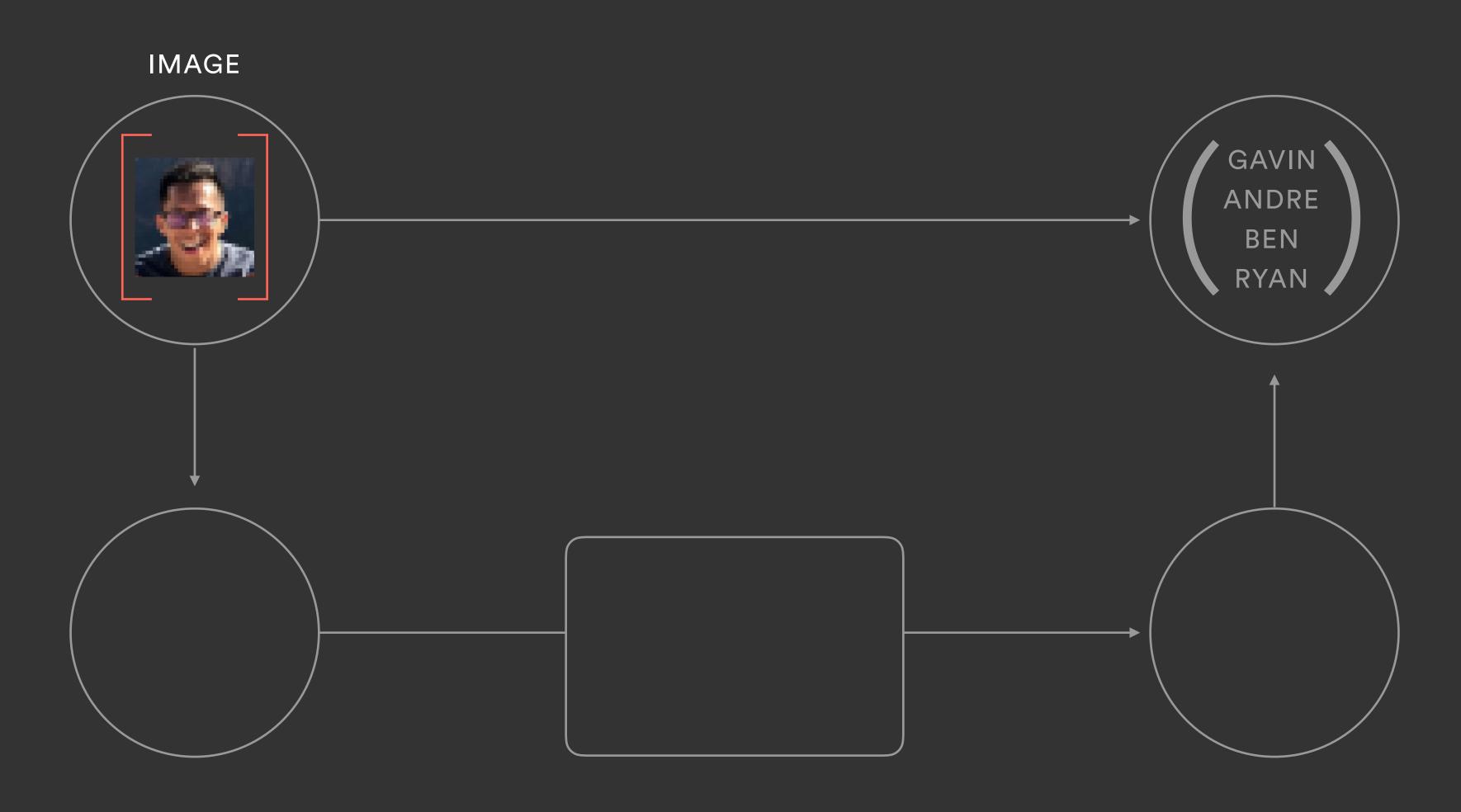
Learning

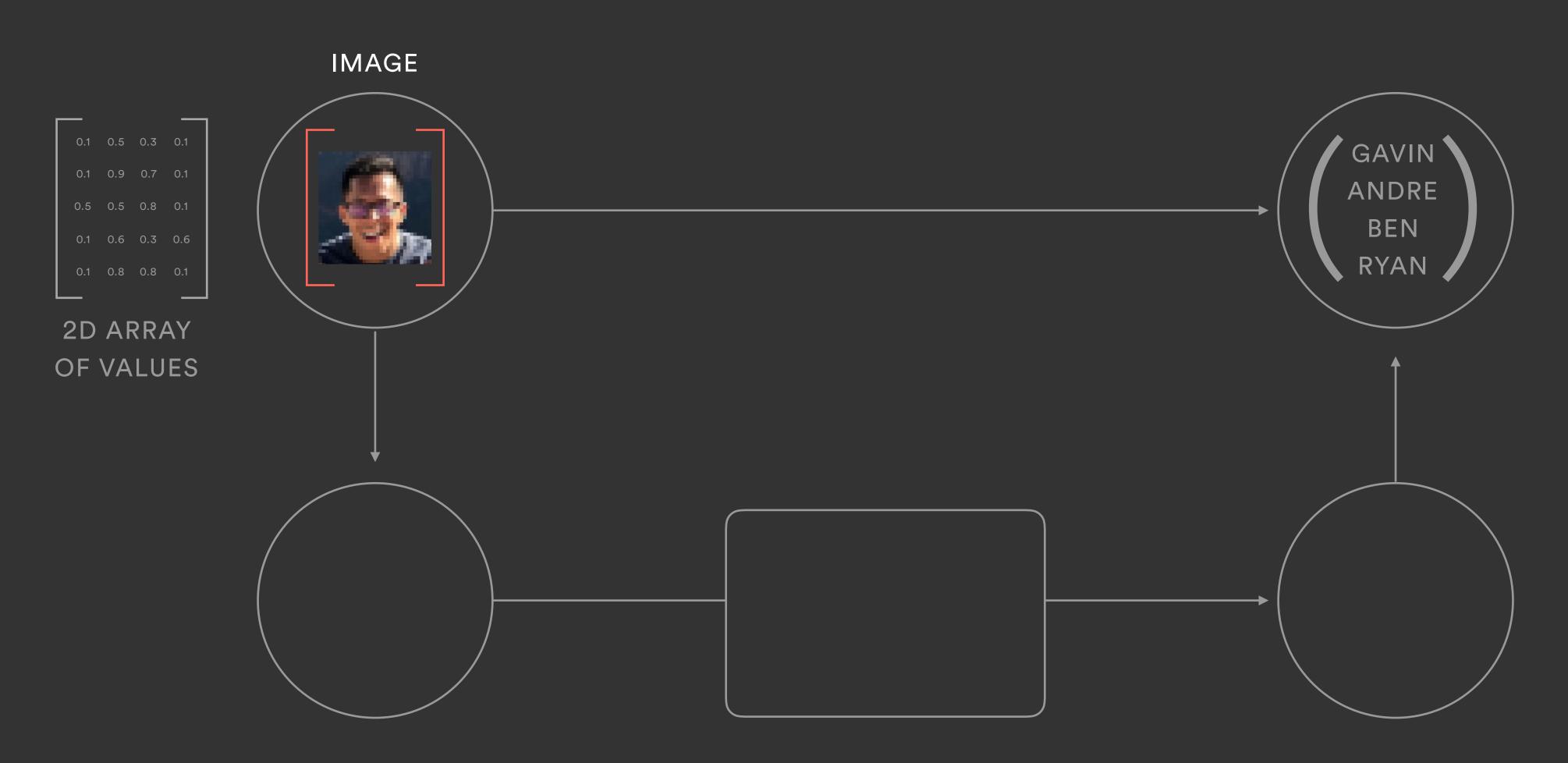
Deciding

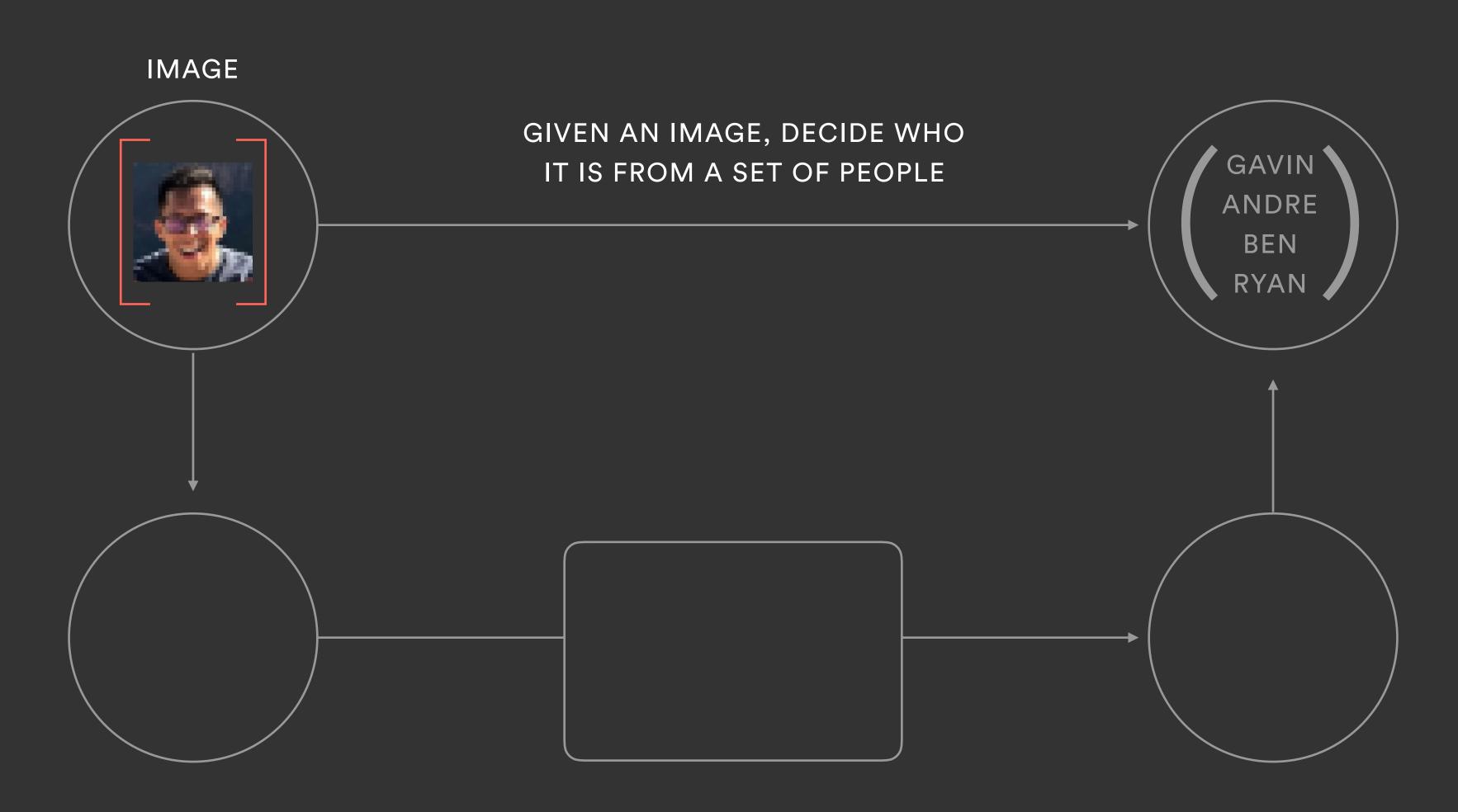


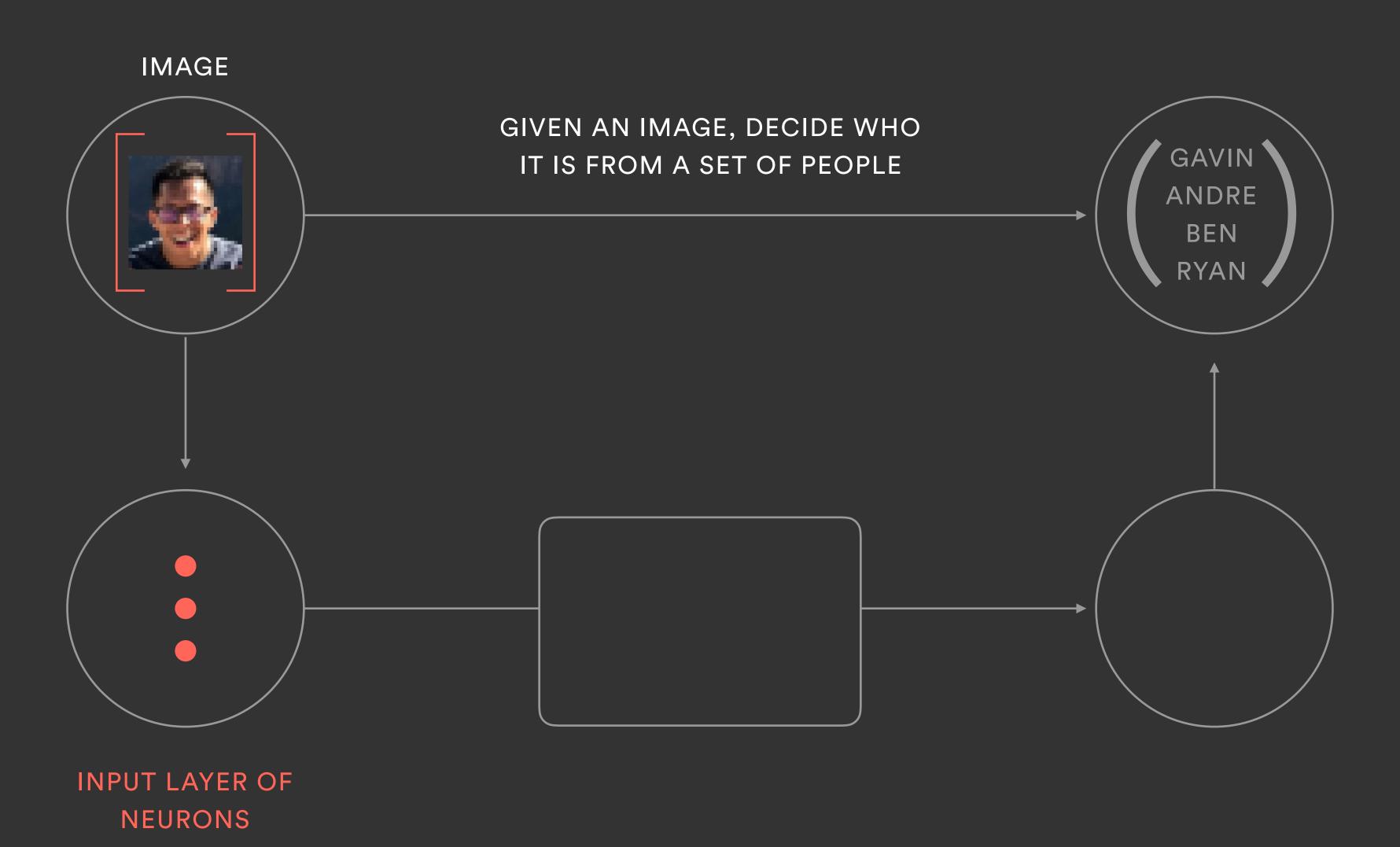
INTRODUCTION DECIDING LEARNING CORRECTNESS

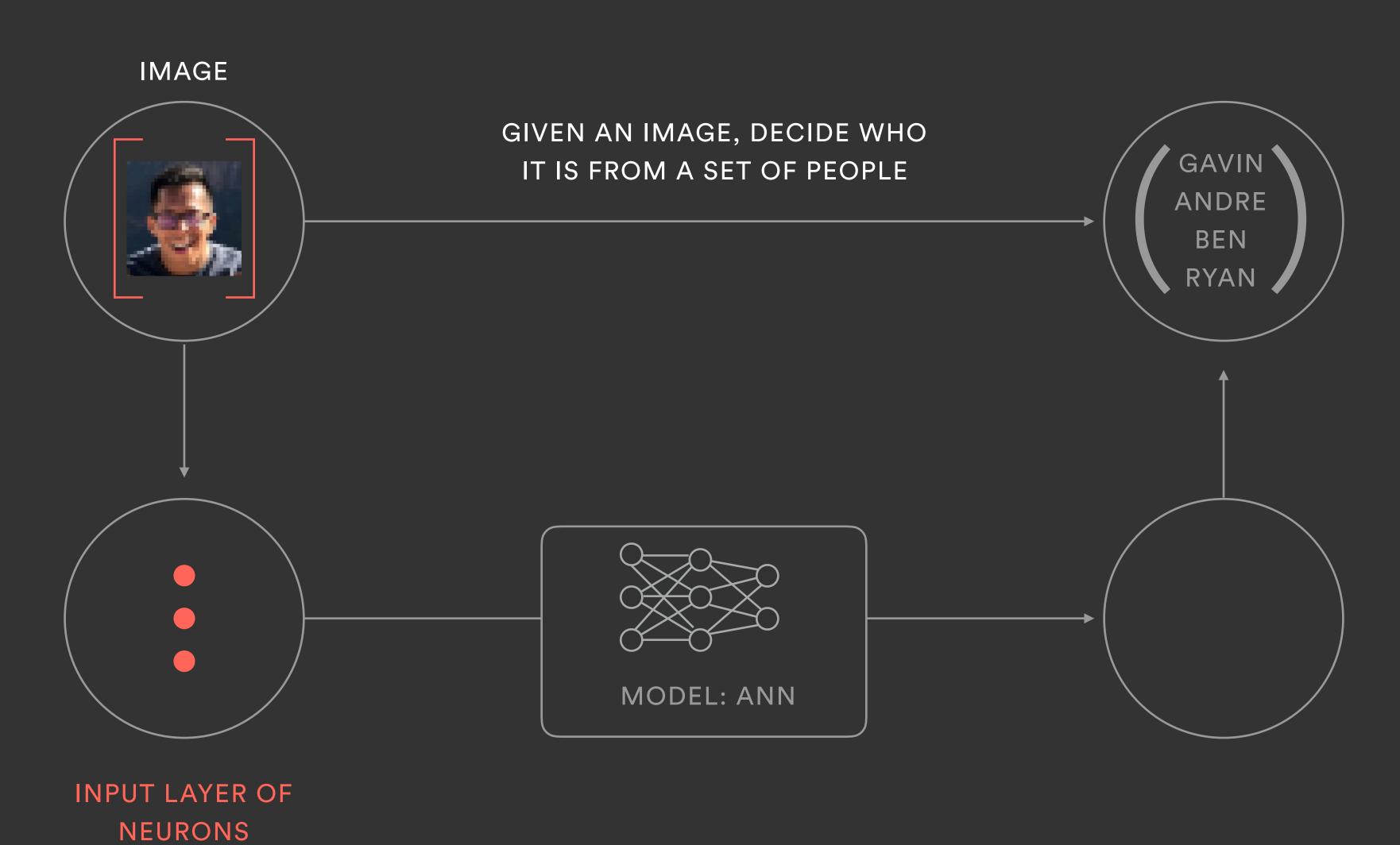


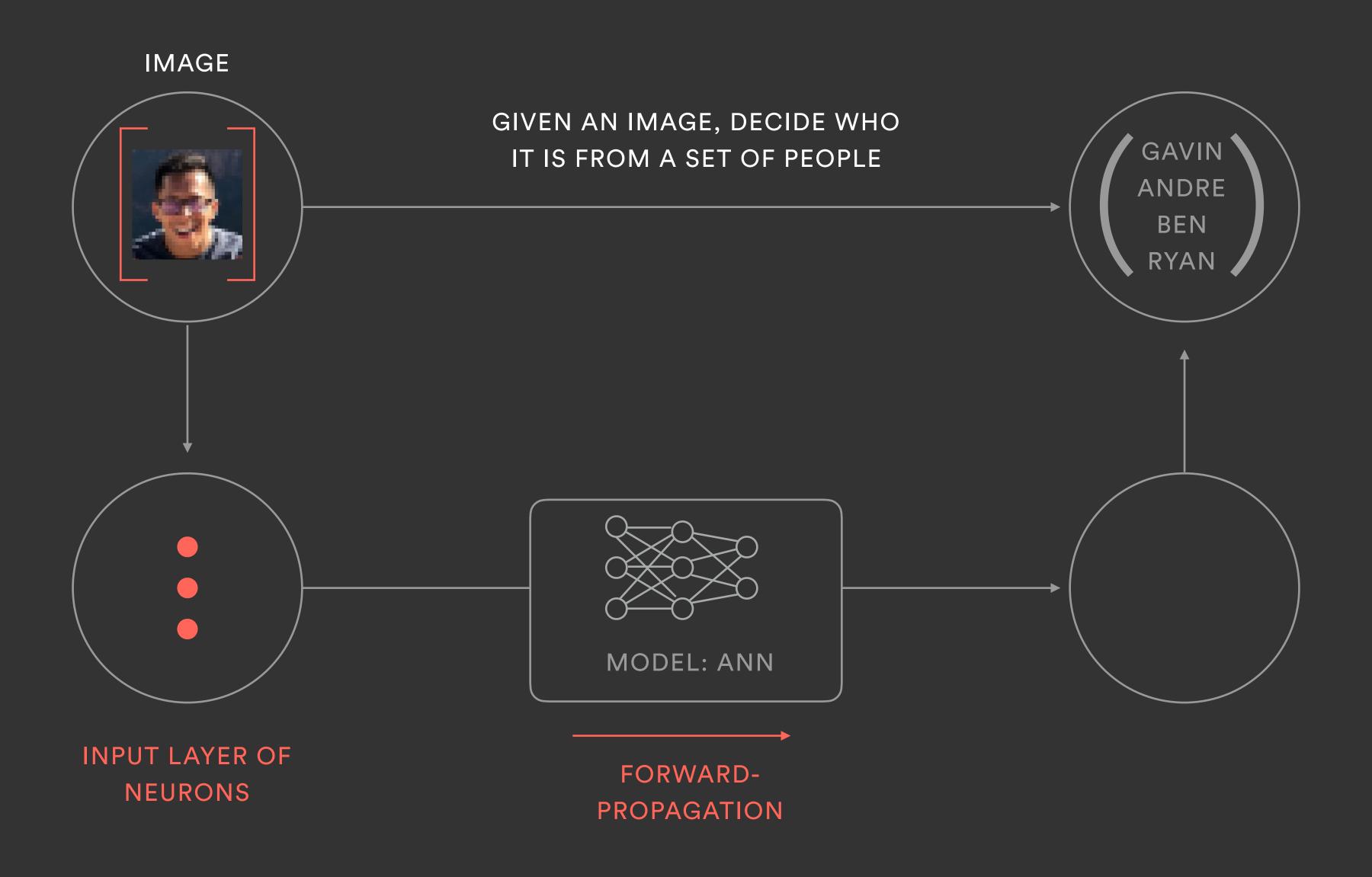


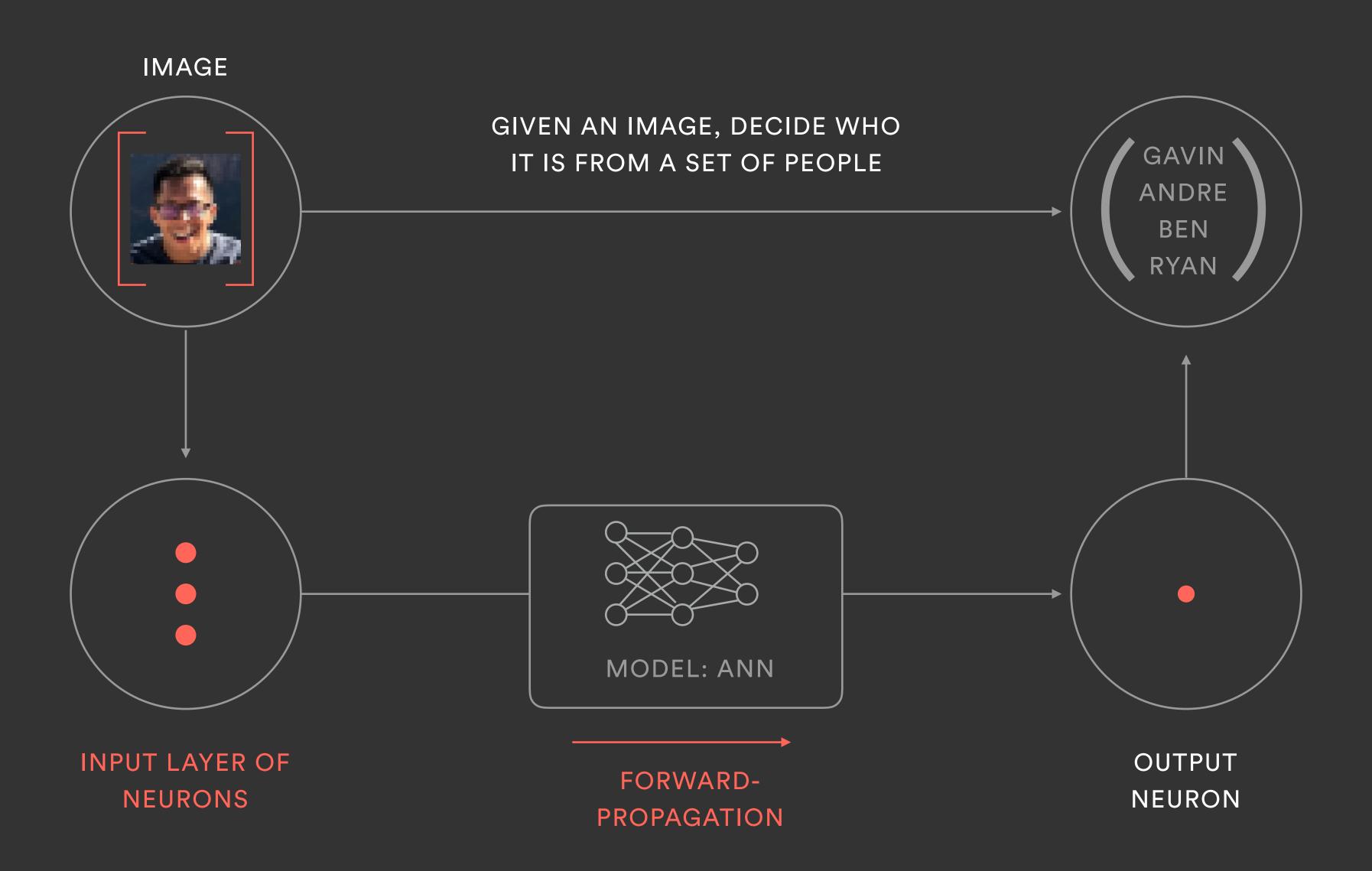


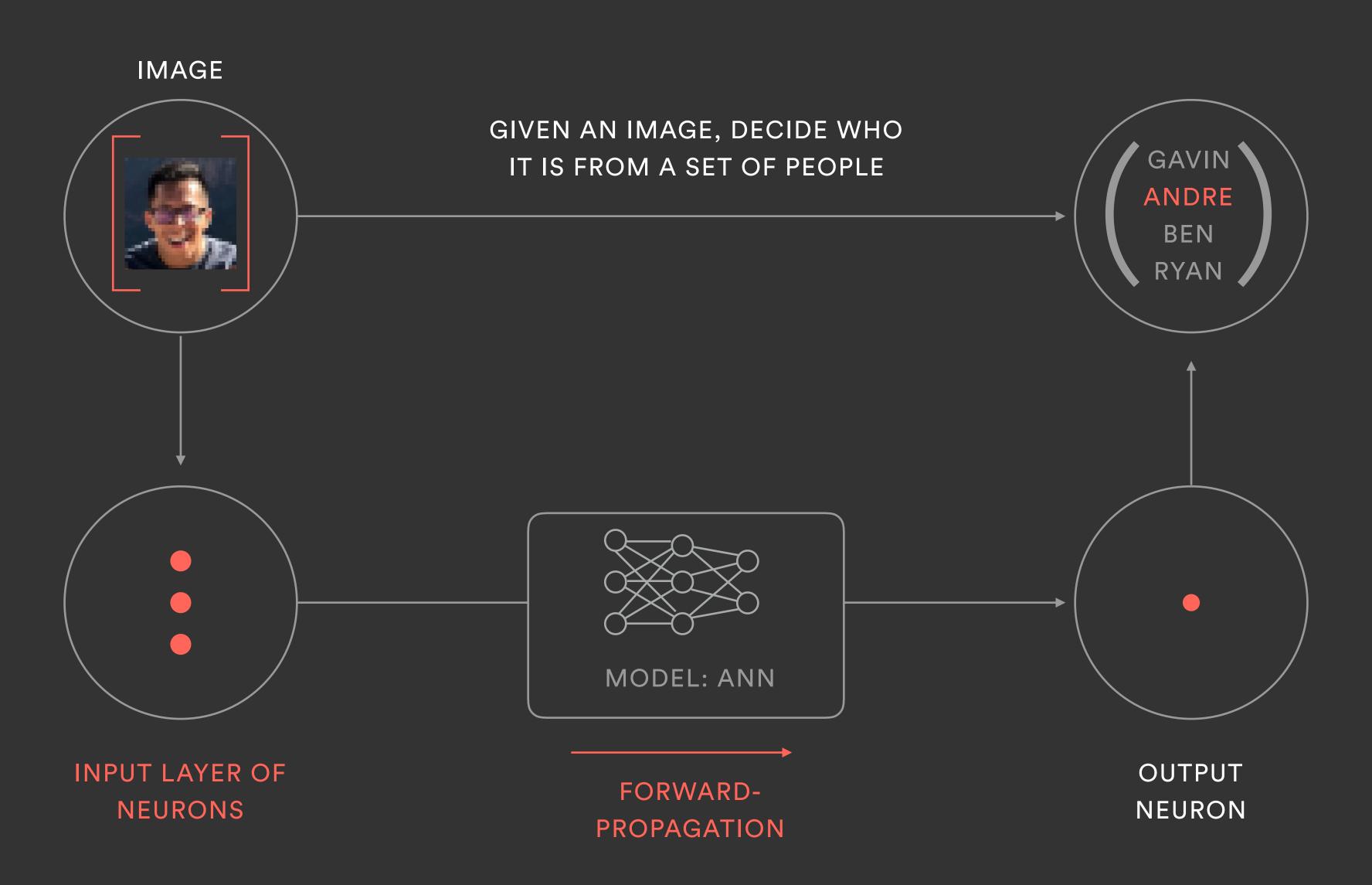










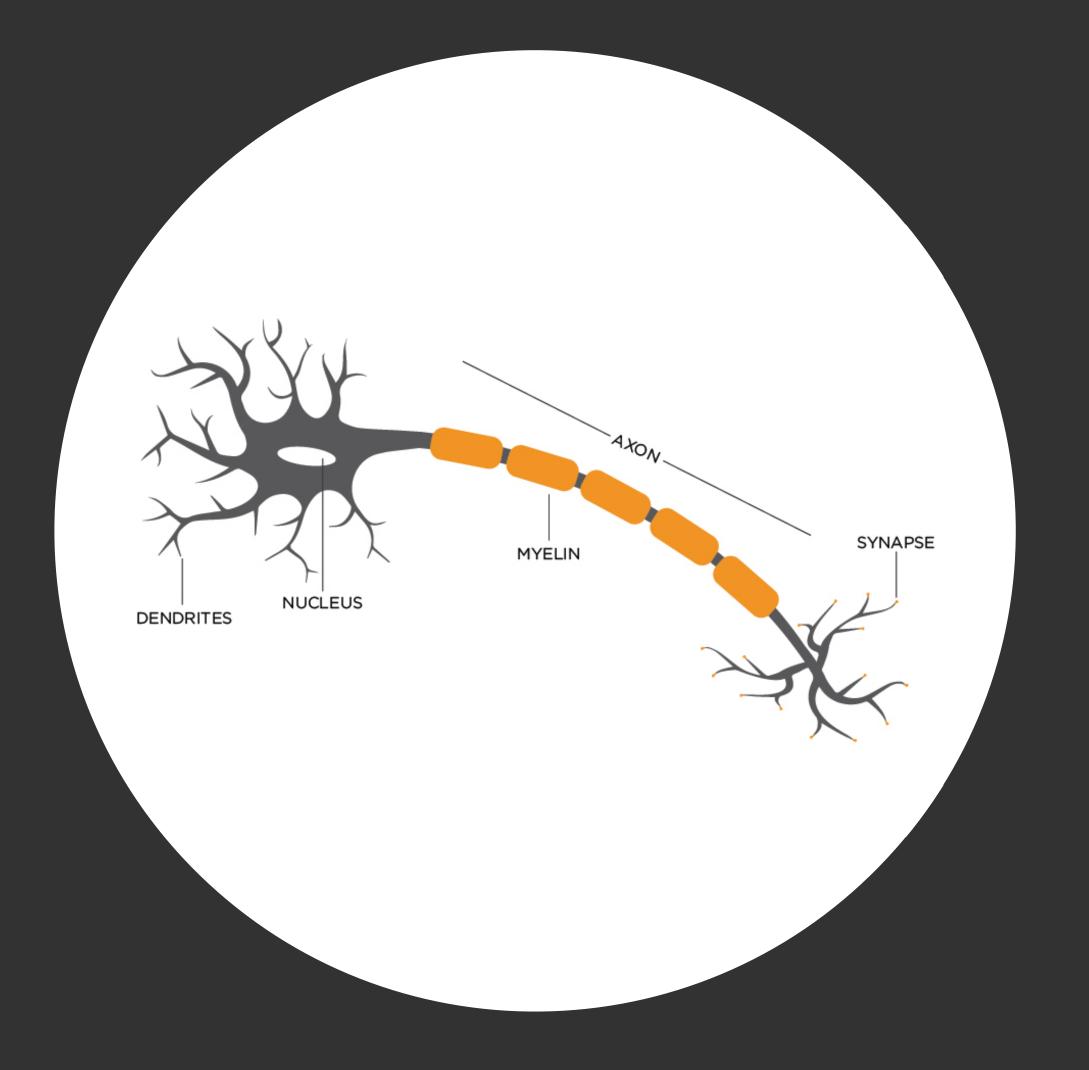


How does it work?

Biological Neuron

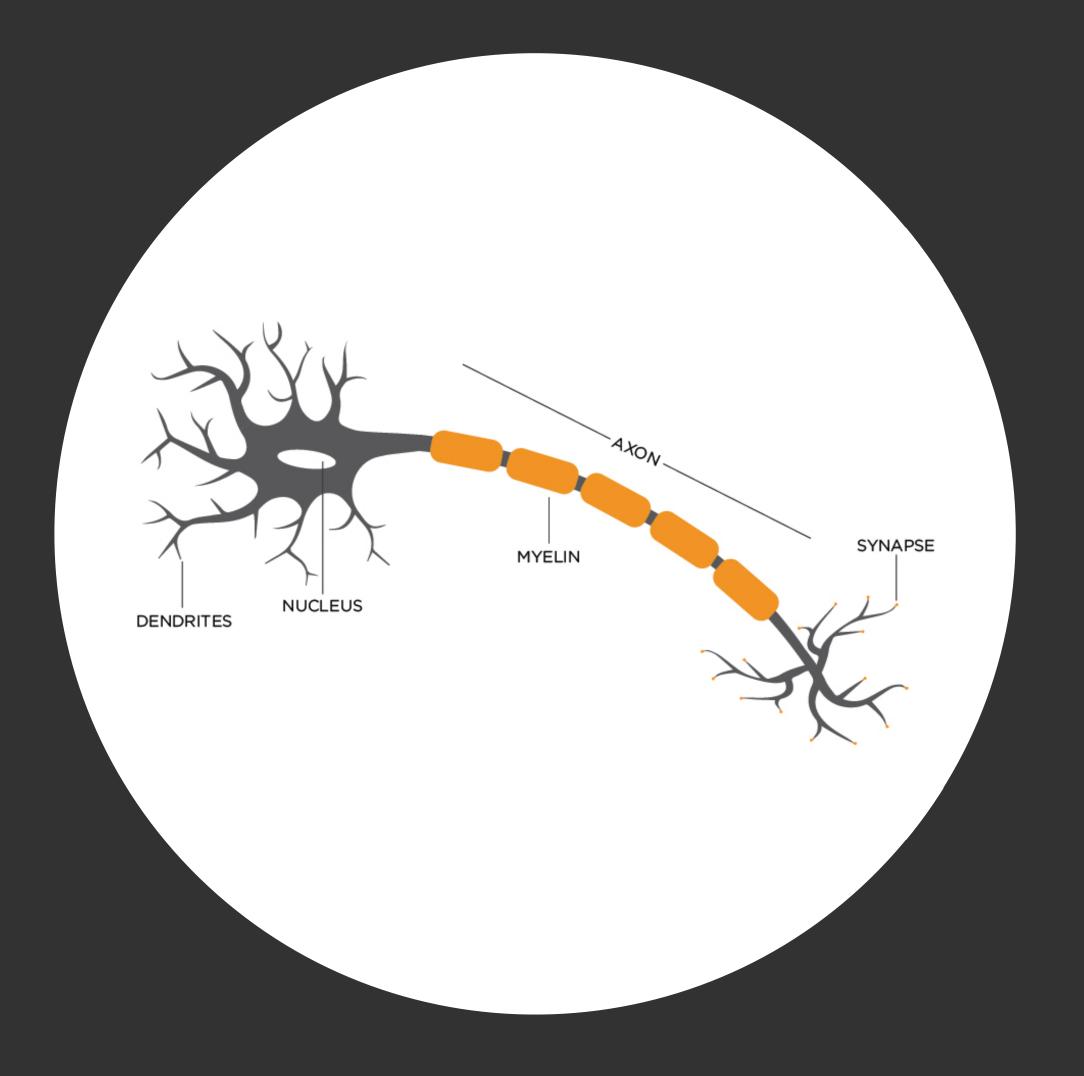
Artificial Neuron

Biological Neuron

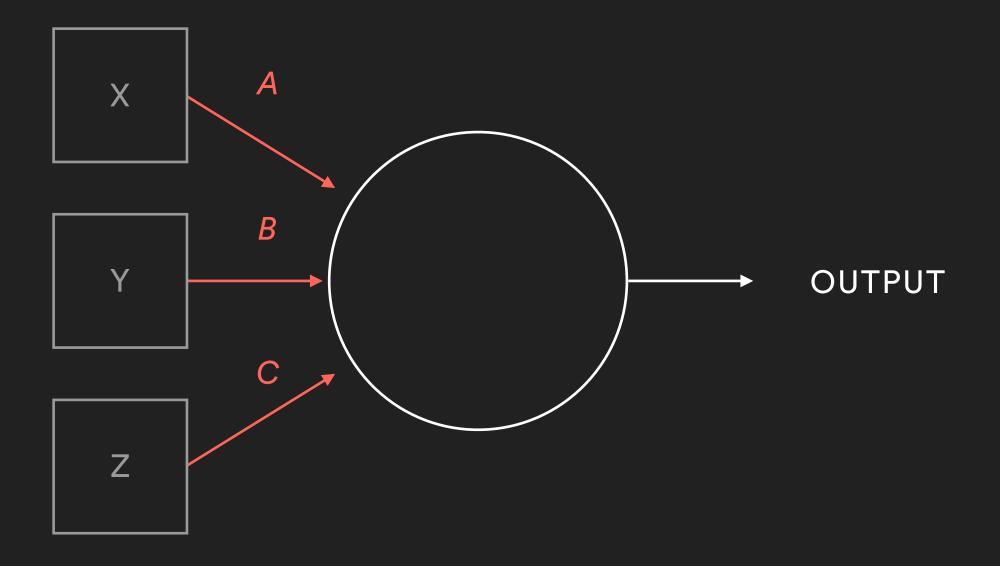


Artificial Neuron

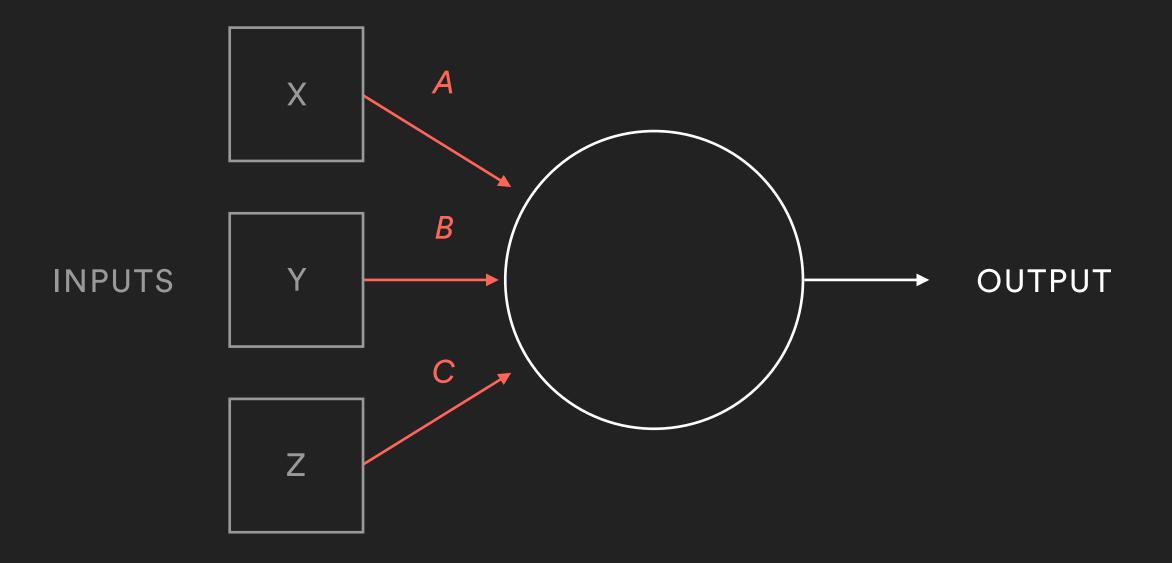
Biological Neuron



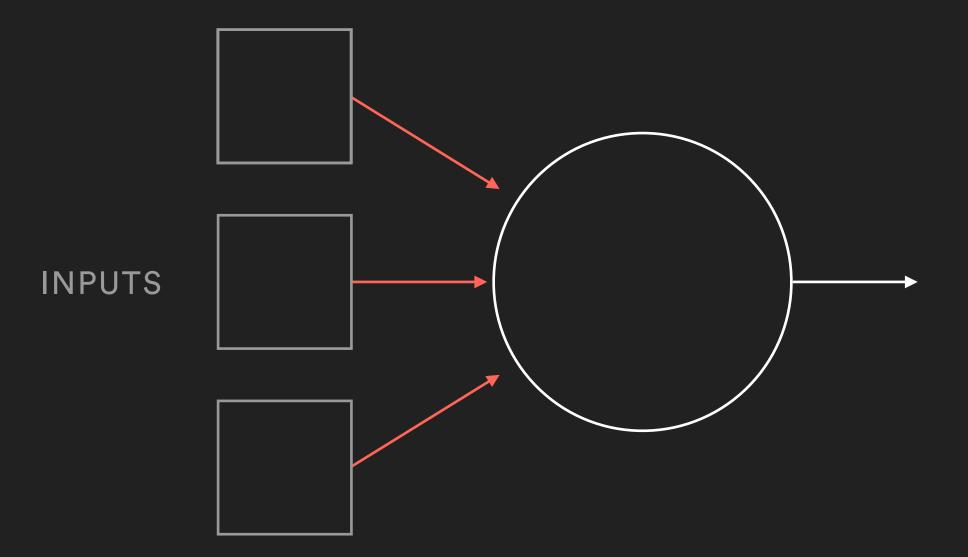
Artificial Neuron



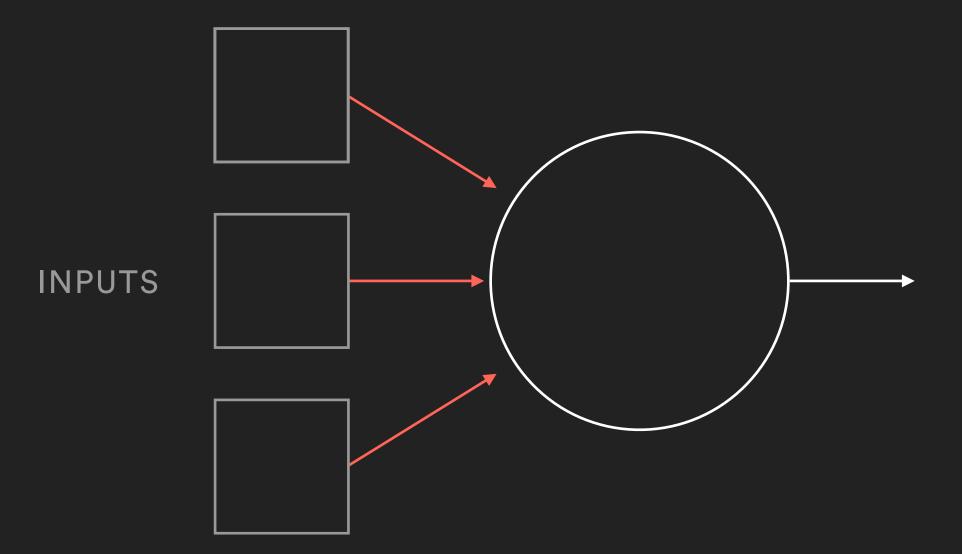
WEIGHTS



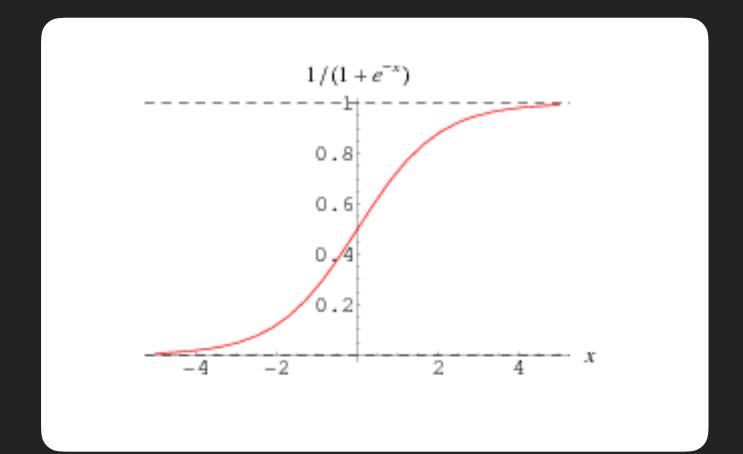
WEIGHTS



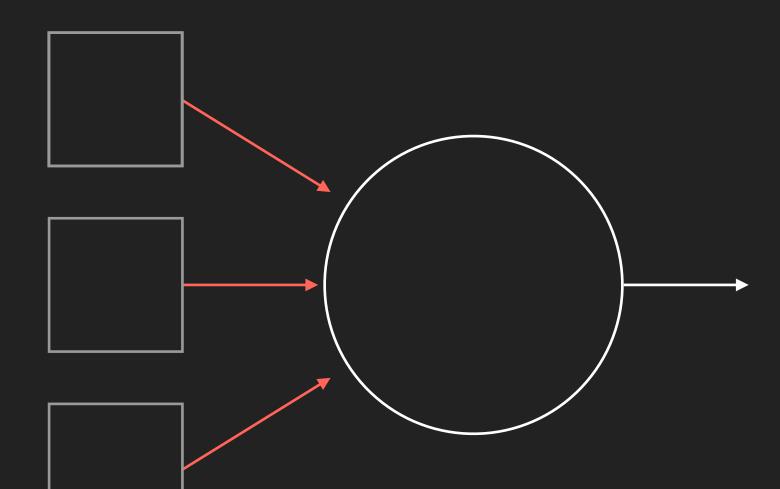
WEIGHTS



 $\sigma \quad (\quad X \quad A \quad + \quad Y \quad B \quad + \quad Z \quad C \quad) \quad = \quad OUTPUT$



WEIGHTS



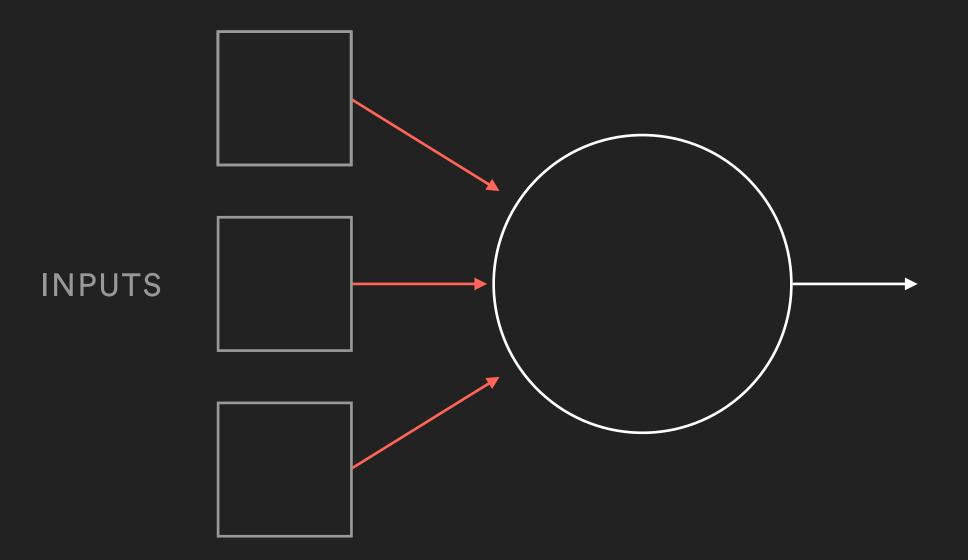
INPUTS

SIGMOID FUNCTION

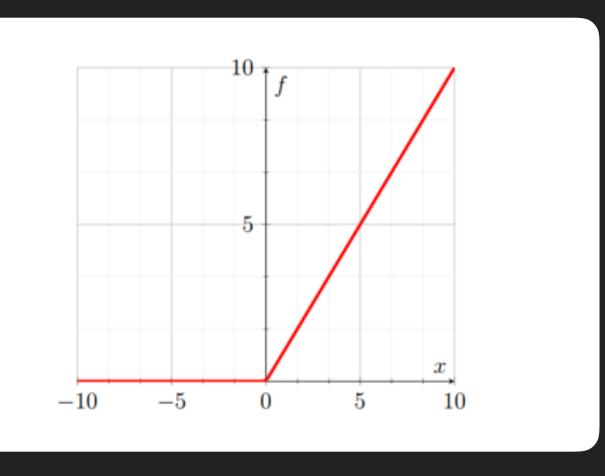
$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}$$

 $\sigma (XA + YB + ZC) = OUTPUT$

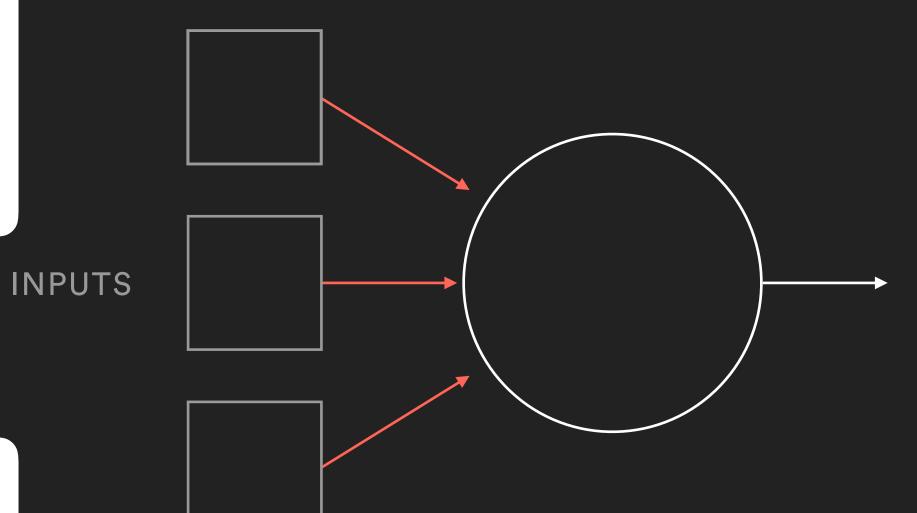
WEIGHTS



 $\sigma (XA + YB + ZC) = OUTPUT$



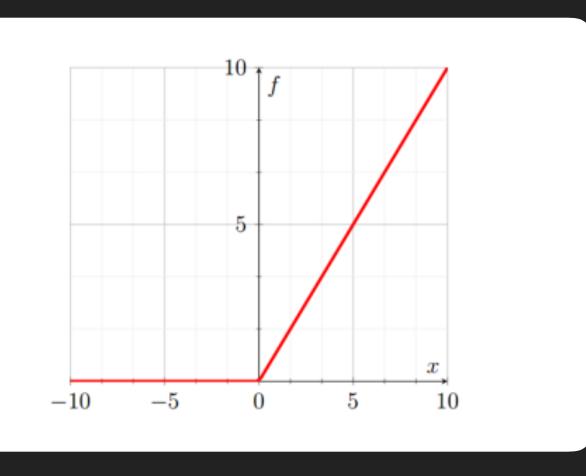
WEIGHTS



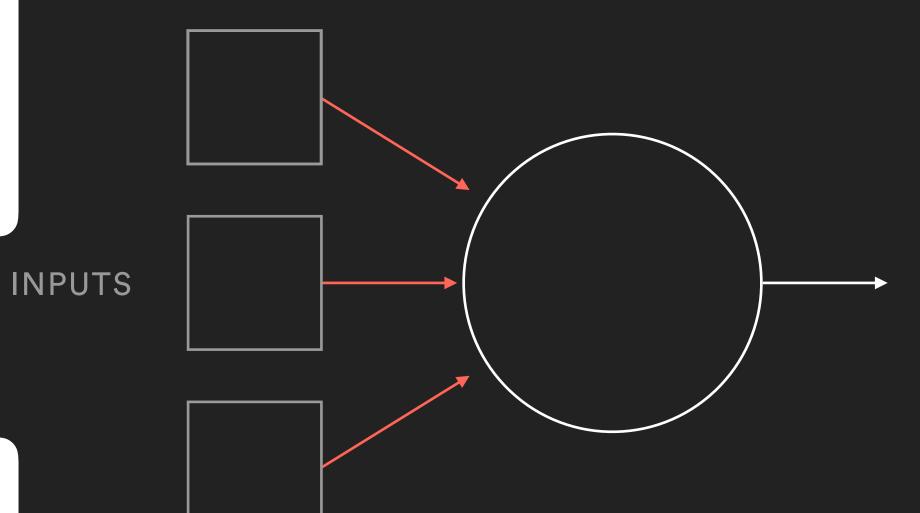
RELU FUNCTION

$$f(x) = x^+ = \max(0,x)$$

 $\sigma (XA + YB + ZC) = OUTPUT$



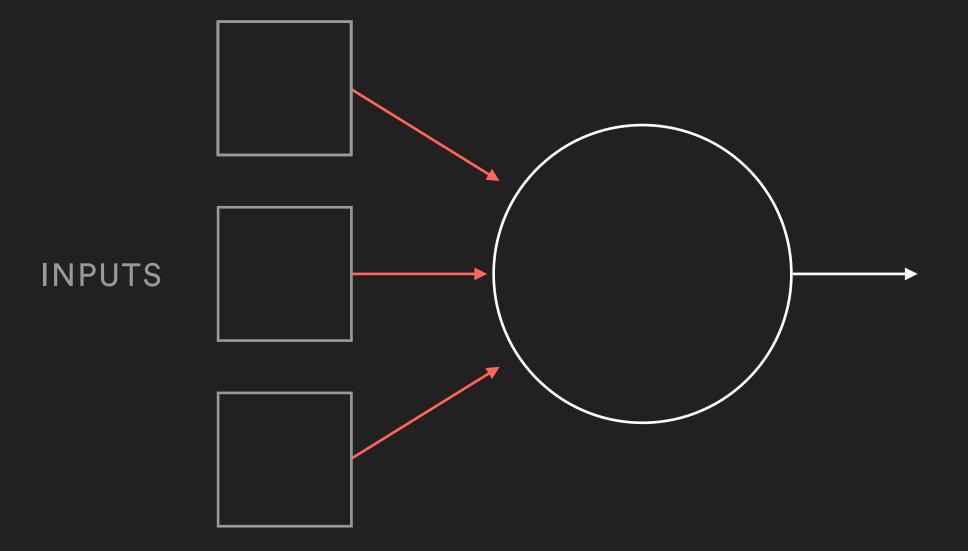
WEIGHTS

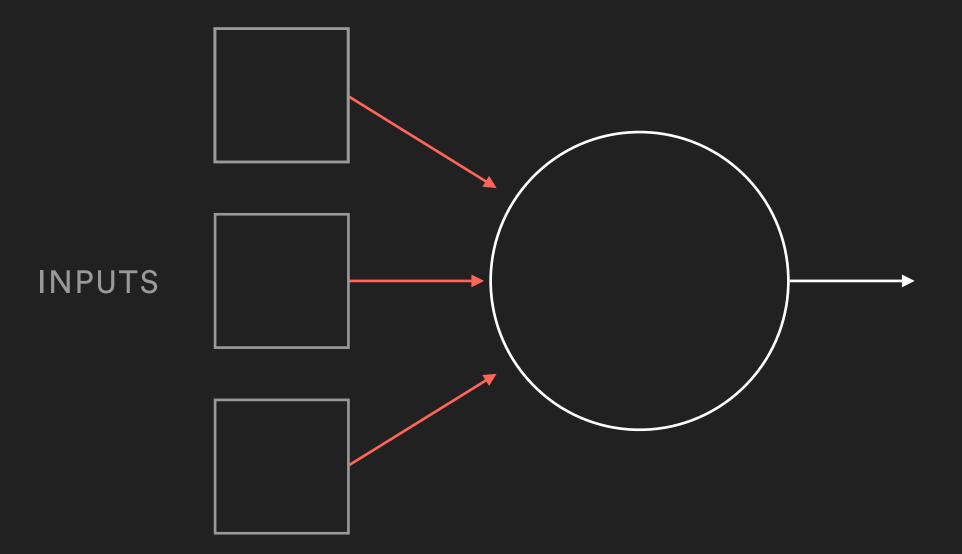


$$f(x) = x^+ = \max(0,x)$$

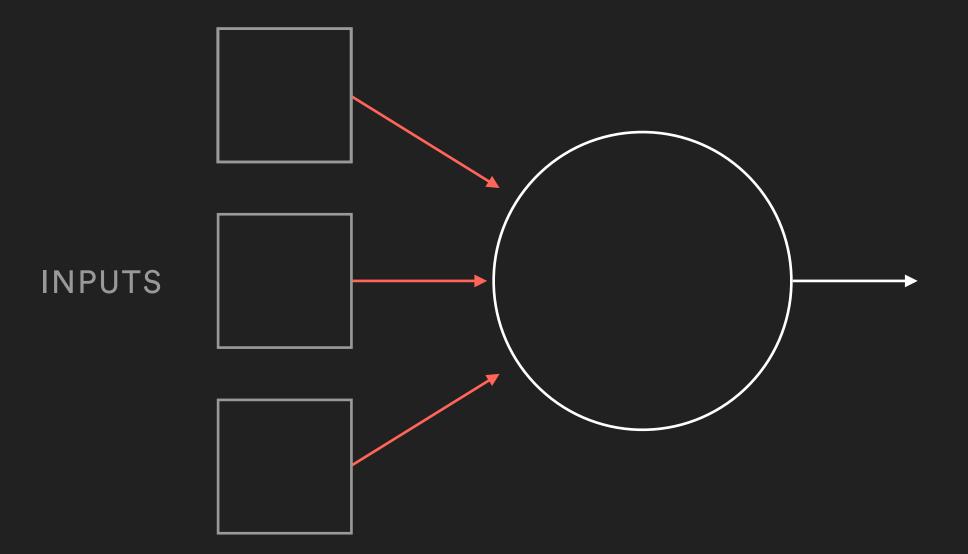
RELU FUNCTION

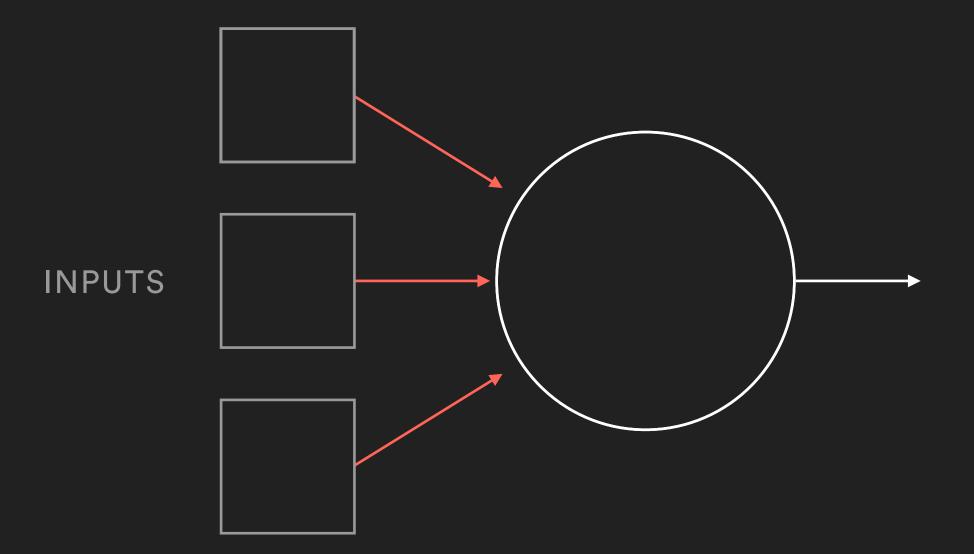
R (XA + YB + ZC) = OUTPUT



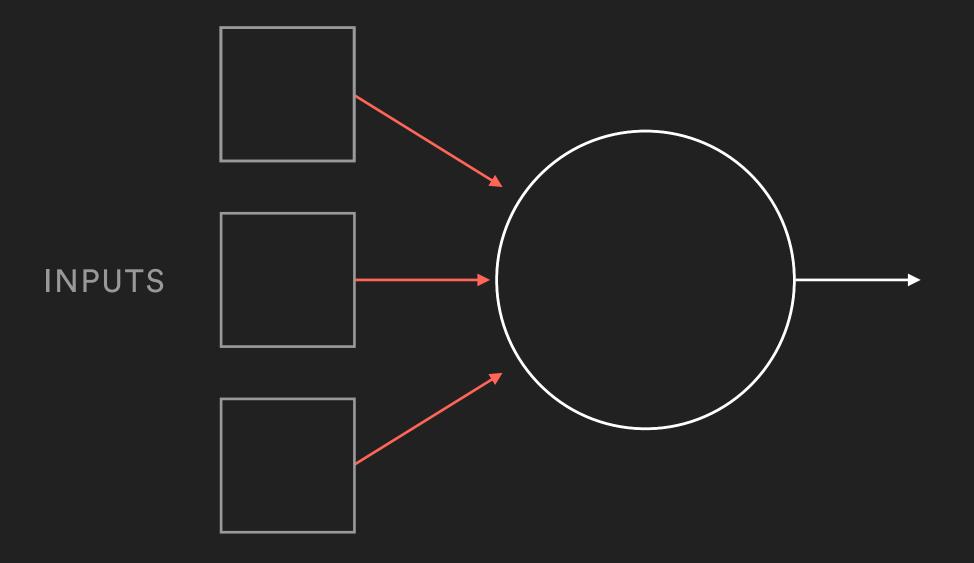


```
R ( X A + Y B + Z C ) = OUTPUT
```





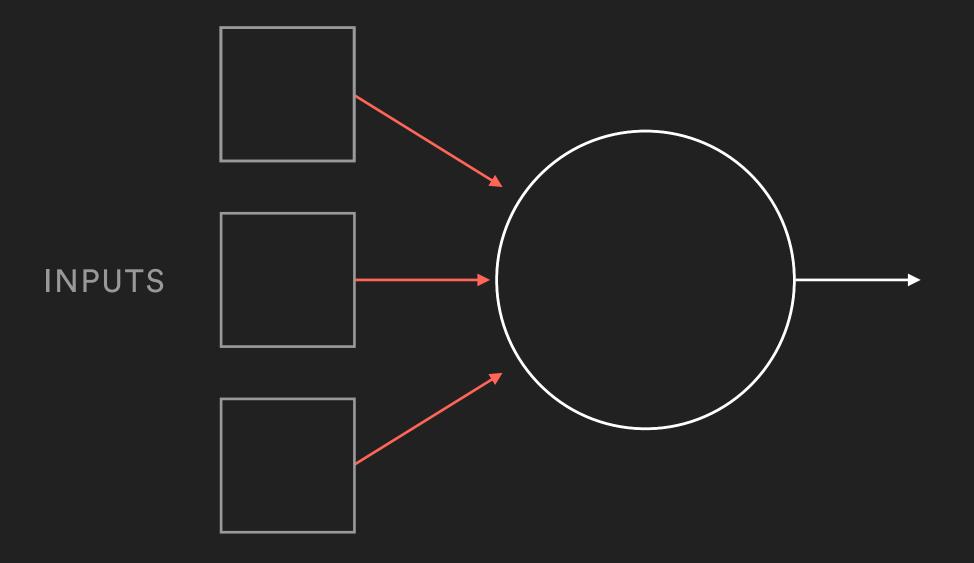
WEIGHTS



R (XA + YB + ZC + BIAS) = OUTPUT

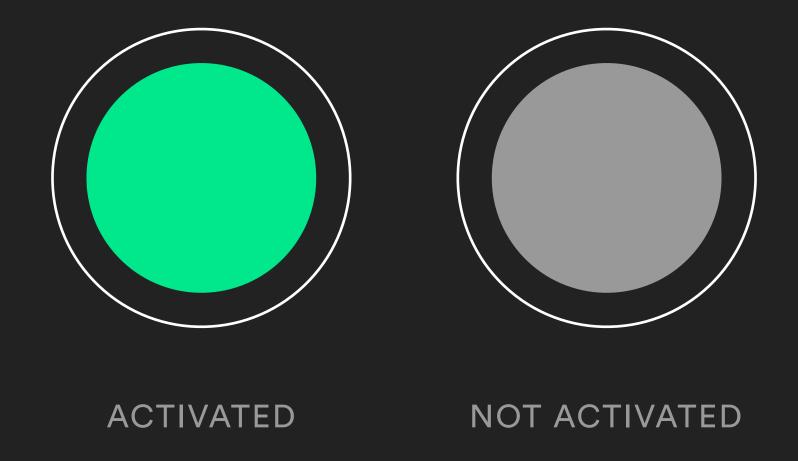
= ACTIVATION FUNCTION

WEIGHTS



R (XA + YB + ZC + BIAS) = OUTPUT

= ACTIVATION FUNCTION



BASED ON THE INPUT VALUE, THE WEIGHTS, AND THE BIAS

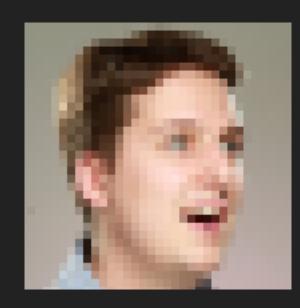
Building the network

INPUT LAYER OF ANN



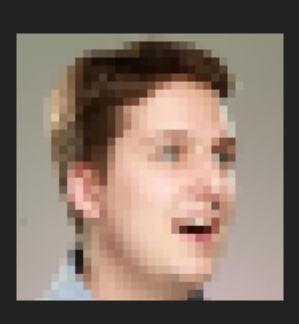
2D ARRAY OF PIXEL VALUES

INPUT LAYER OF ANN



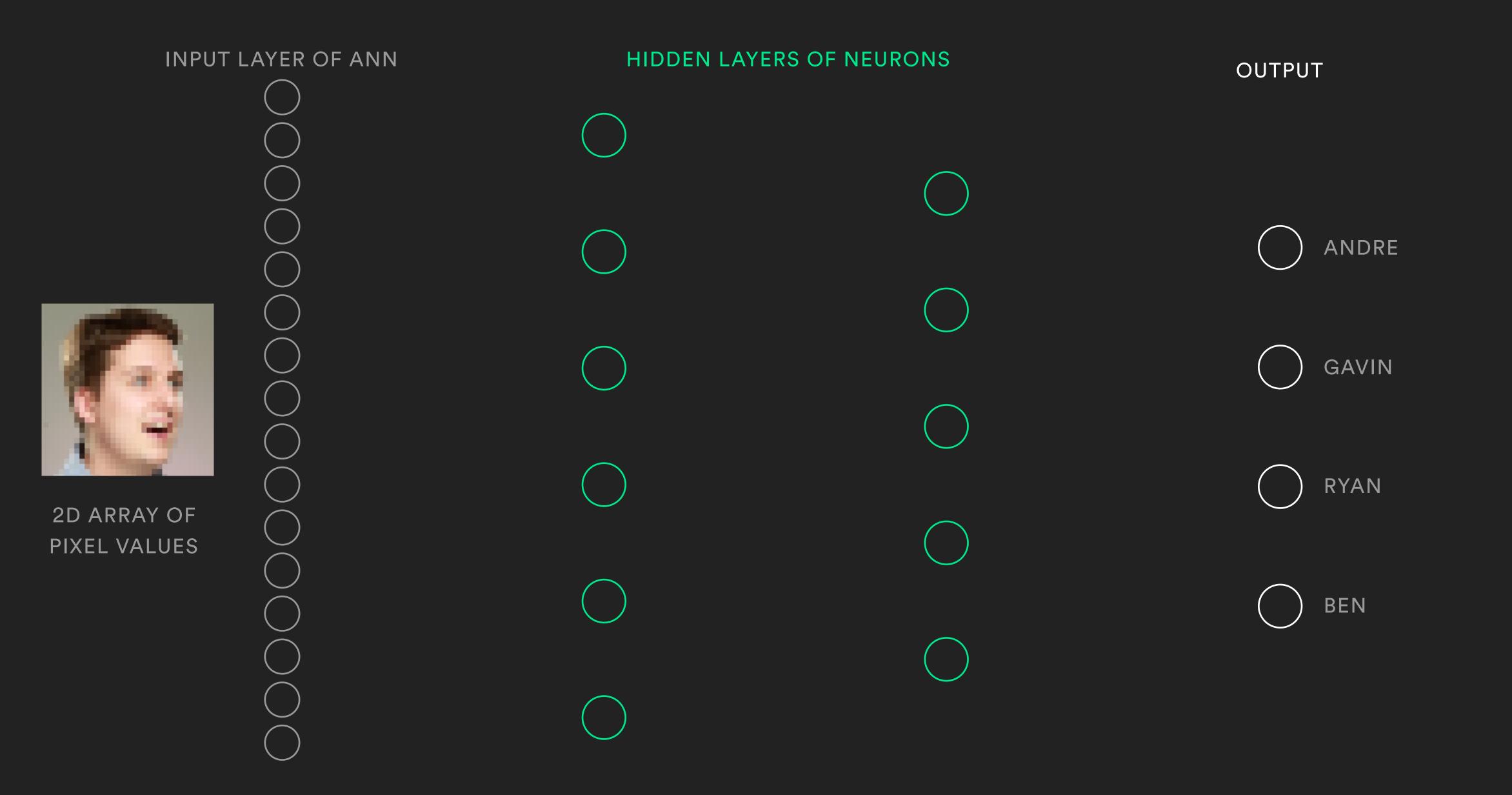
2D ARRAY OF PIXEL VALUES

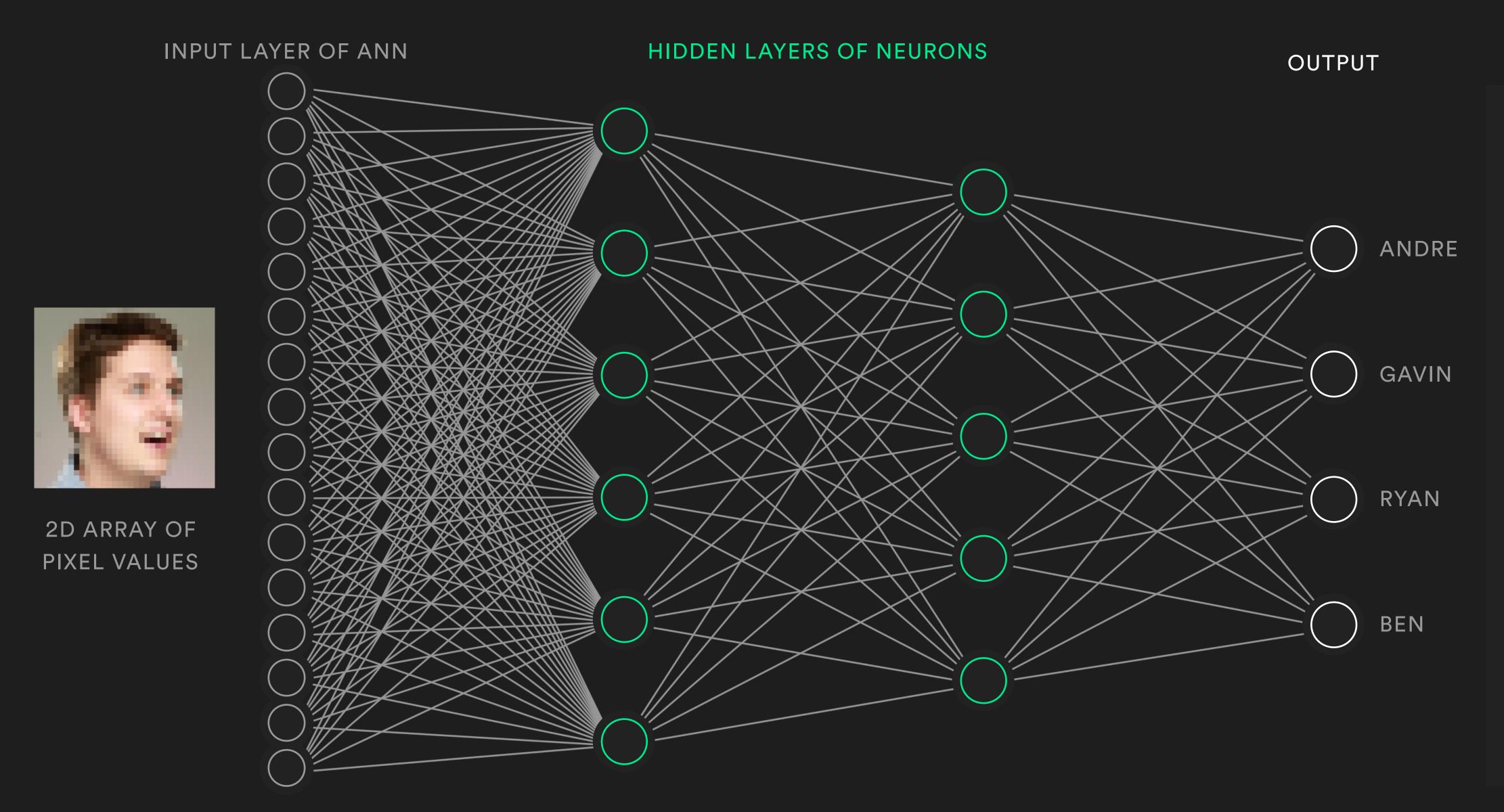
INPUT LAYER OF ANN



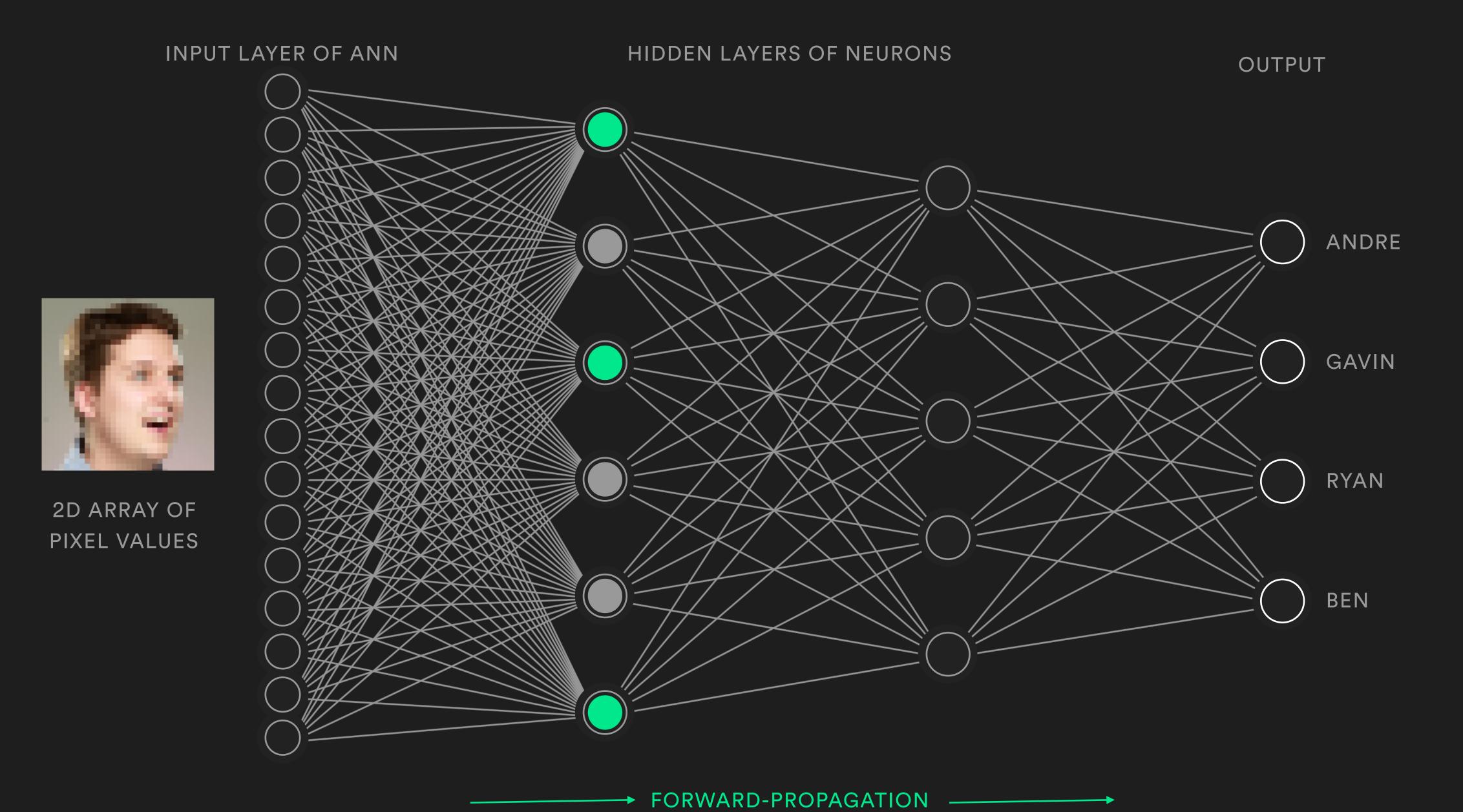
2D ARRAY OF PIXEL VALUES

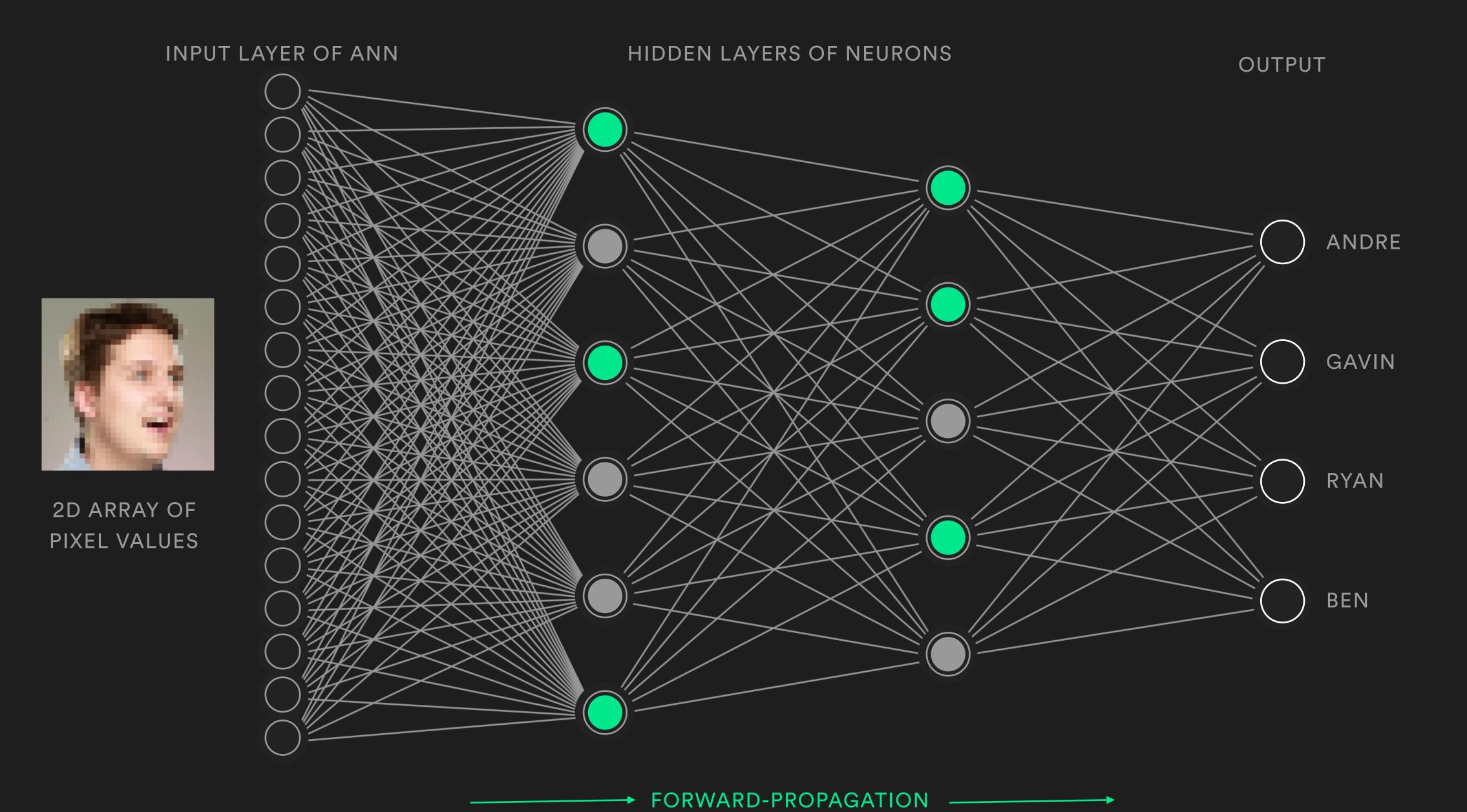
INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS 2D ARRAY OF PIXEL VALUES

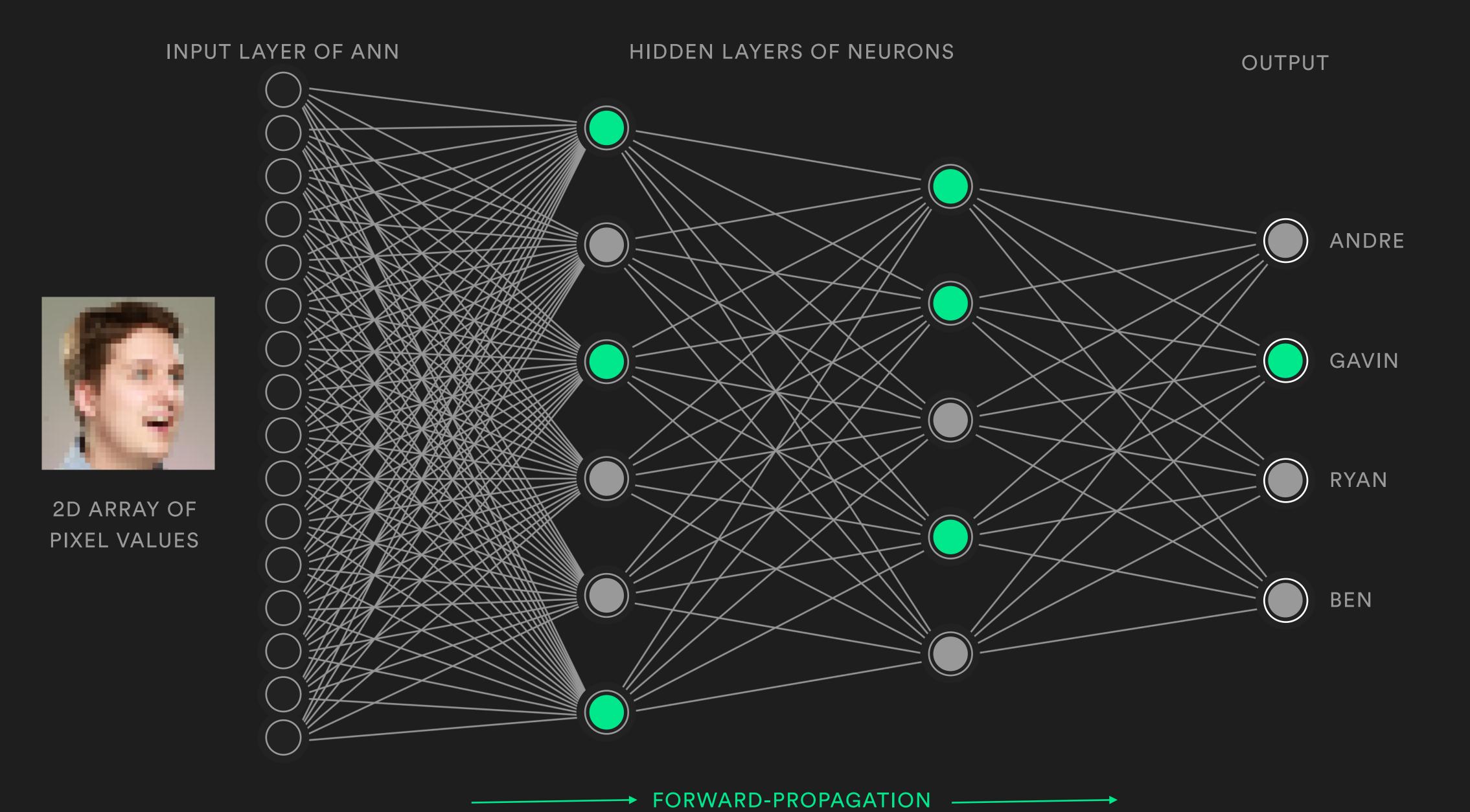


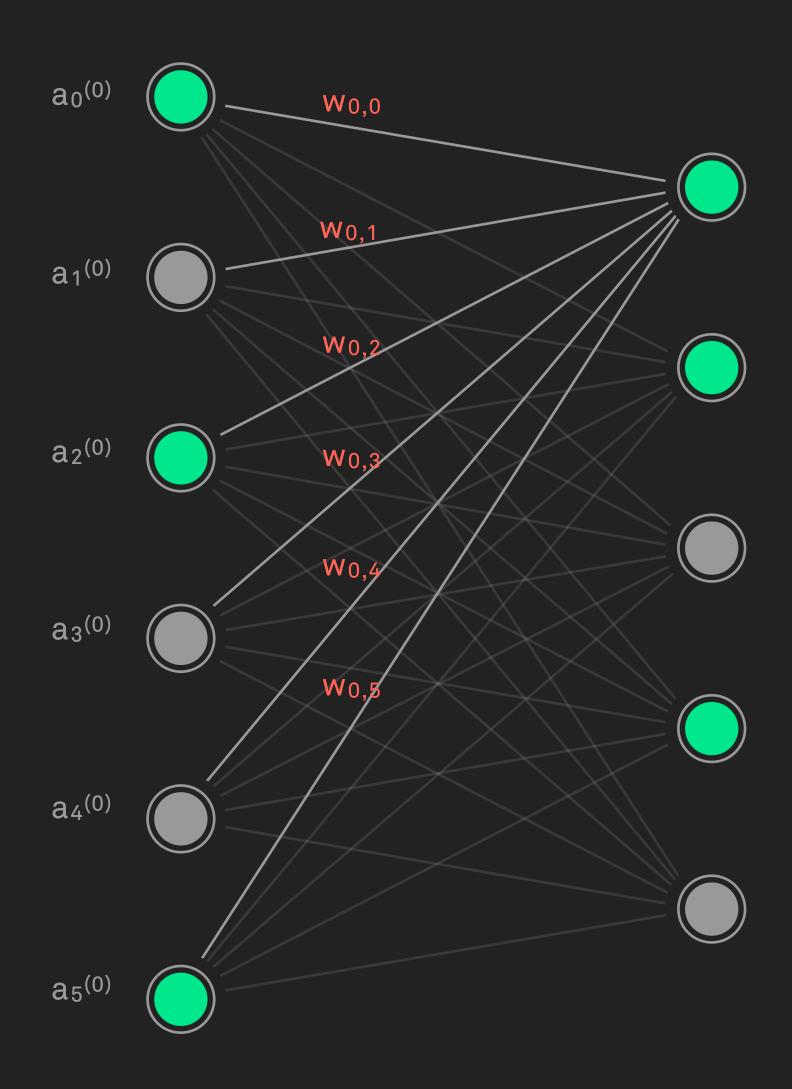


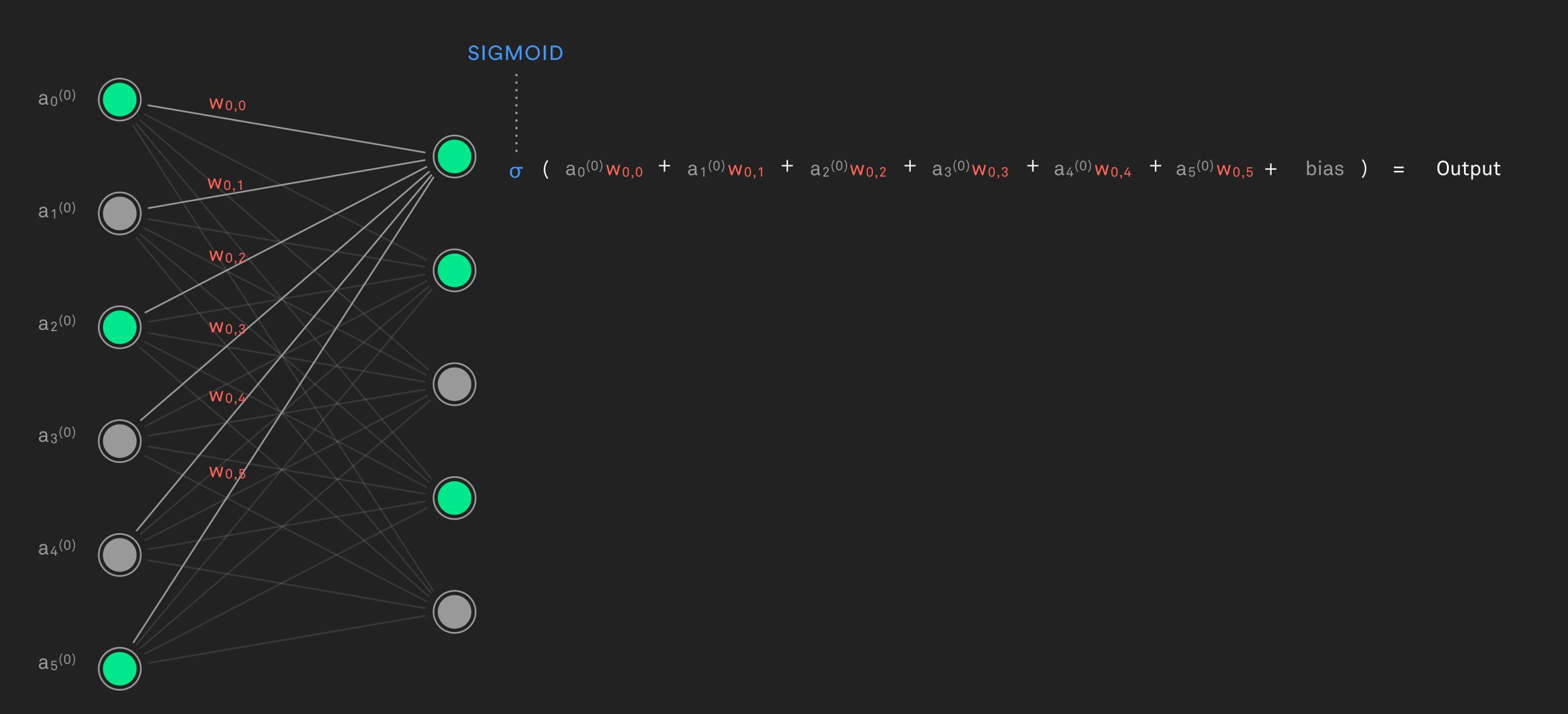
WEIGHTED CONNECTIONS

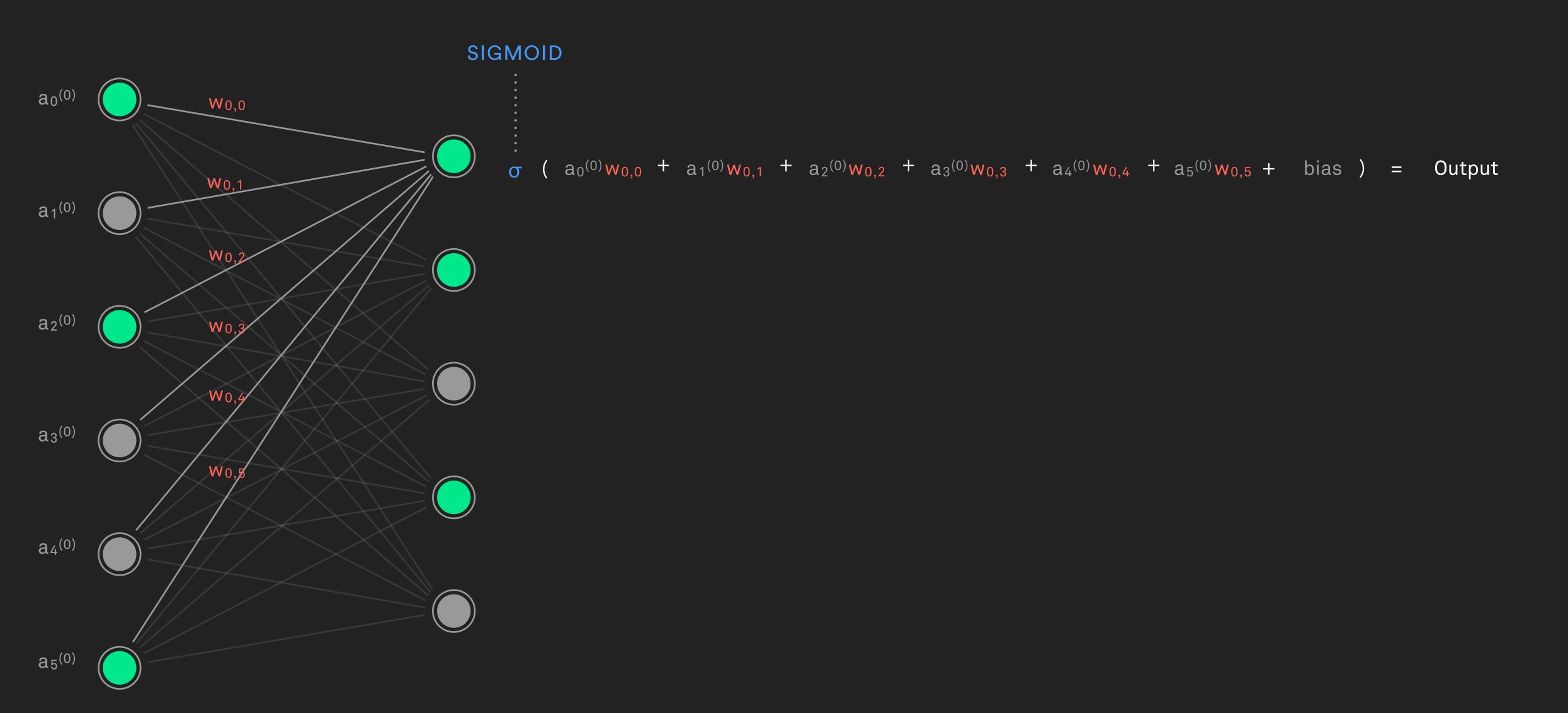


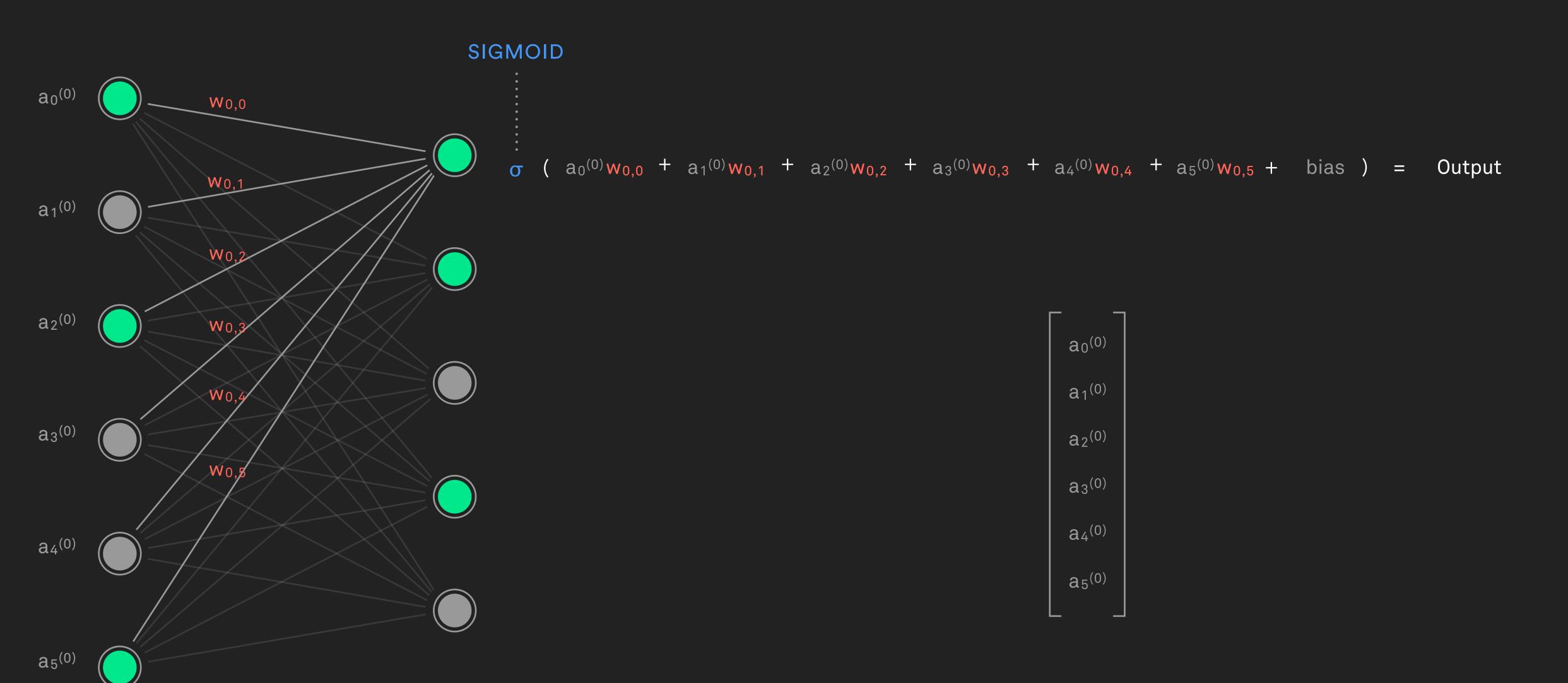


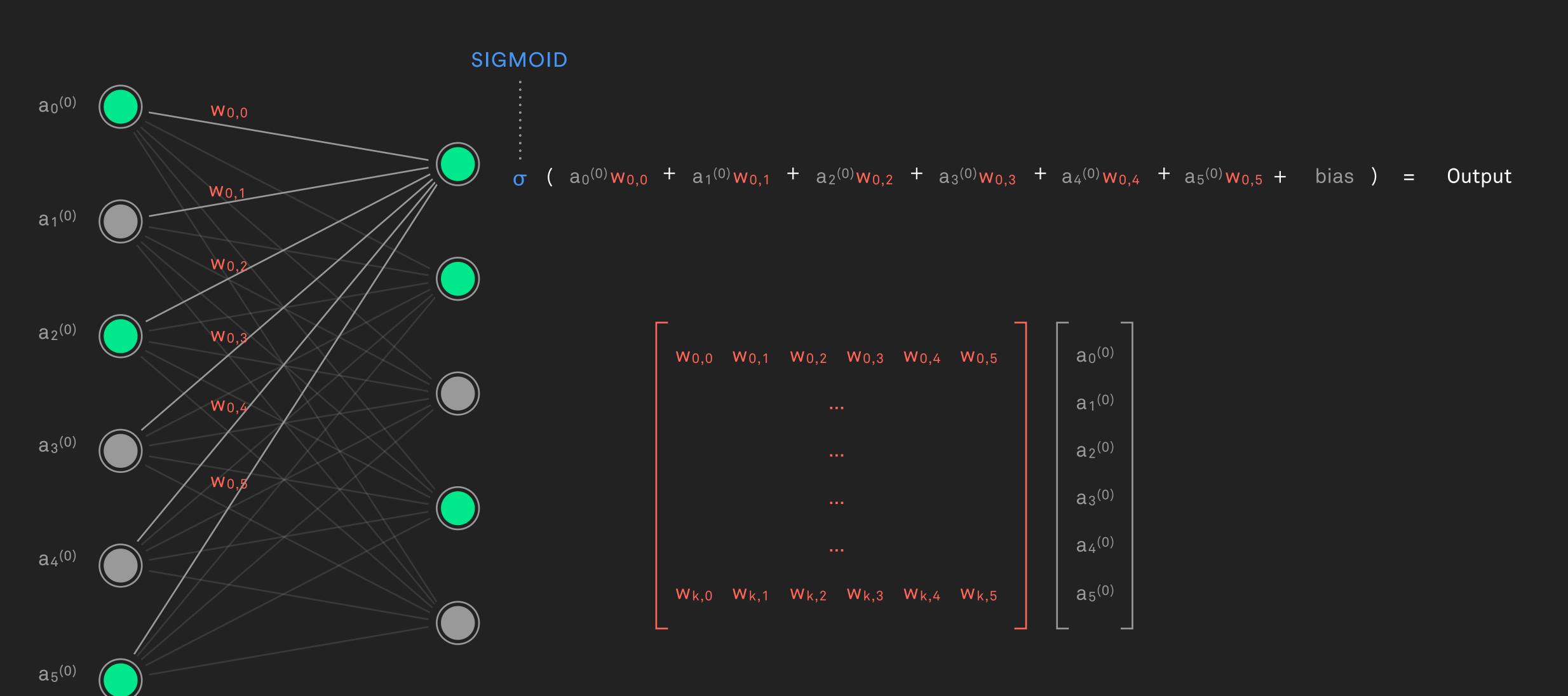


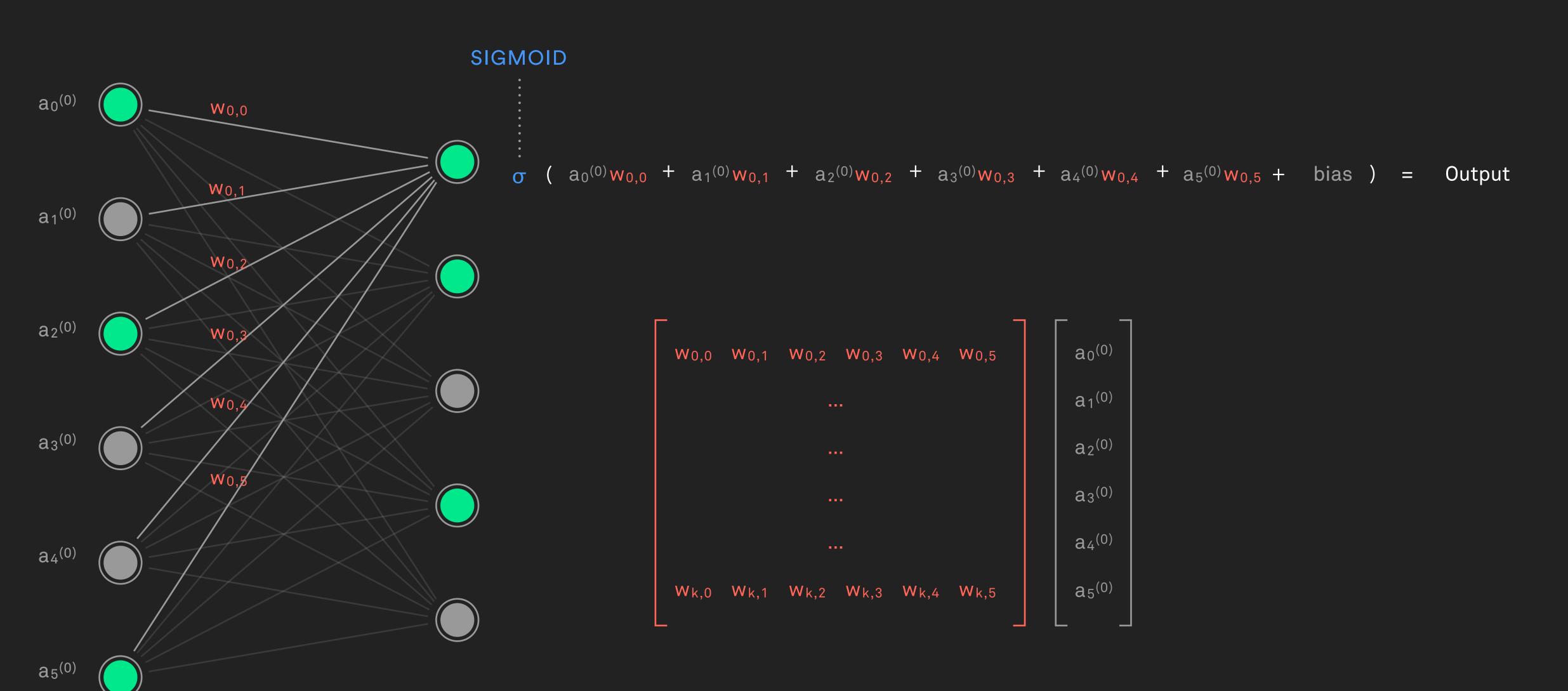


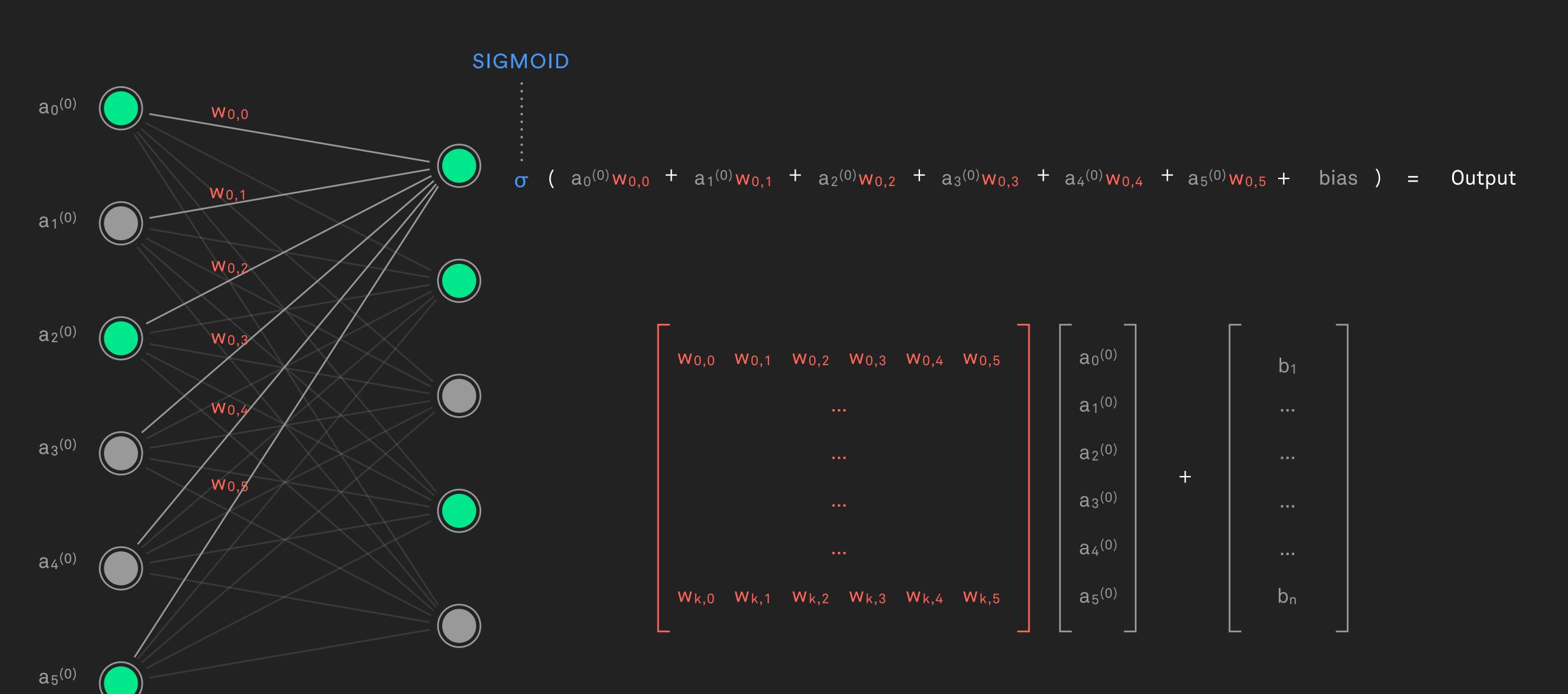


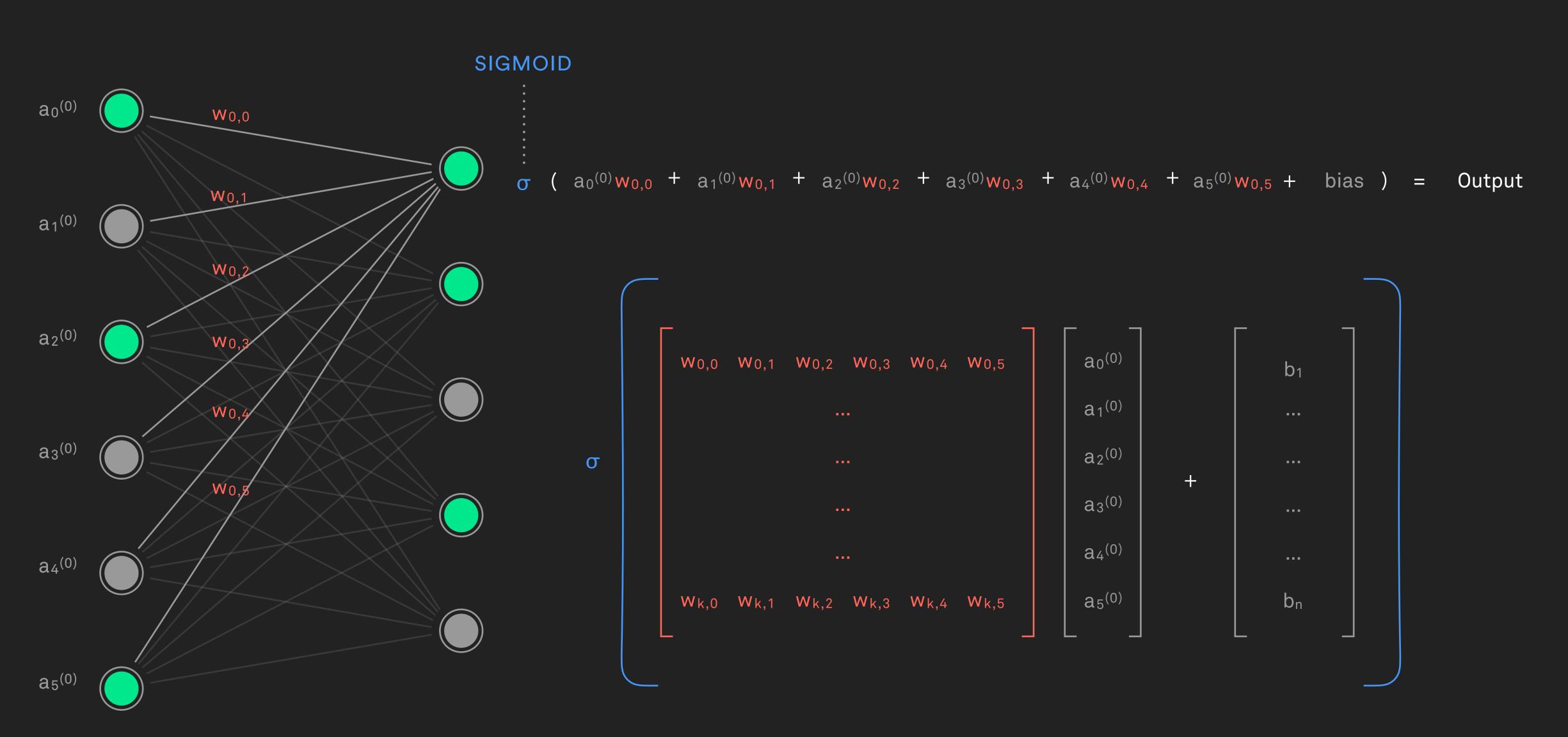


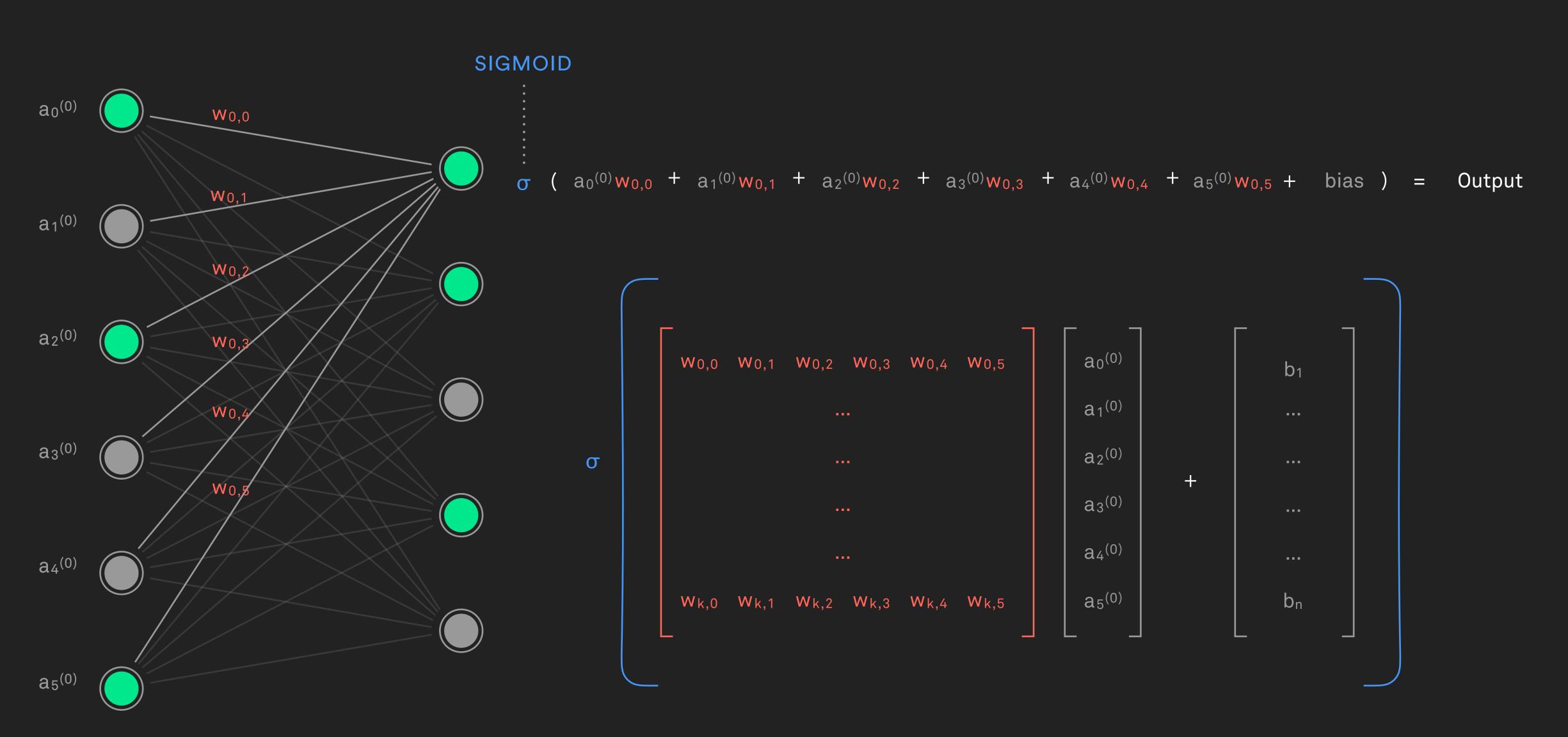


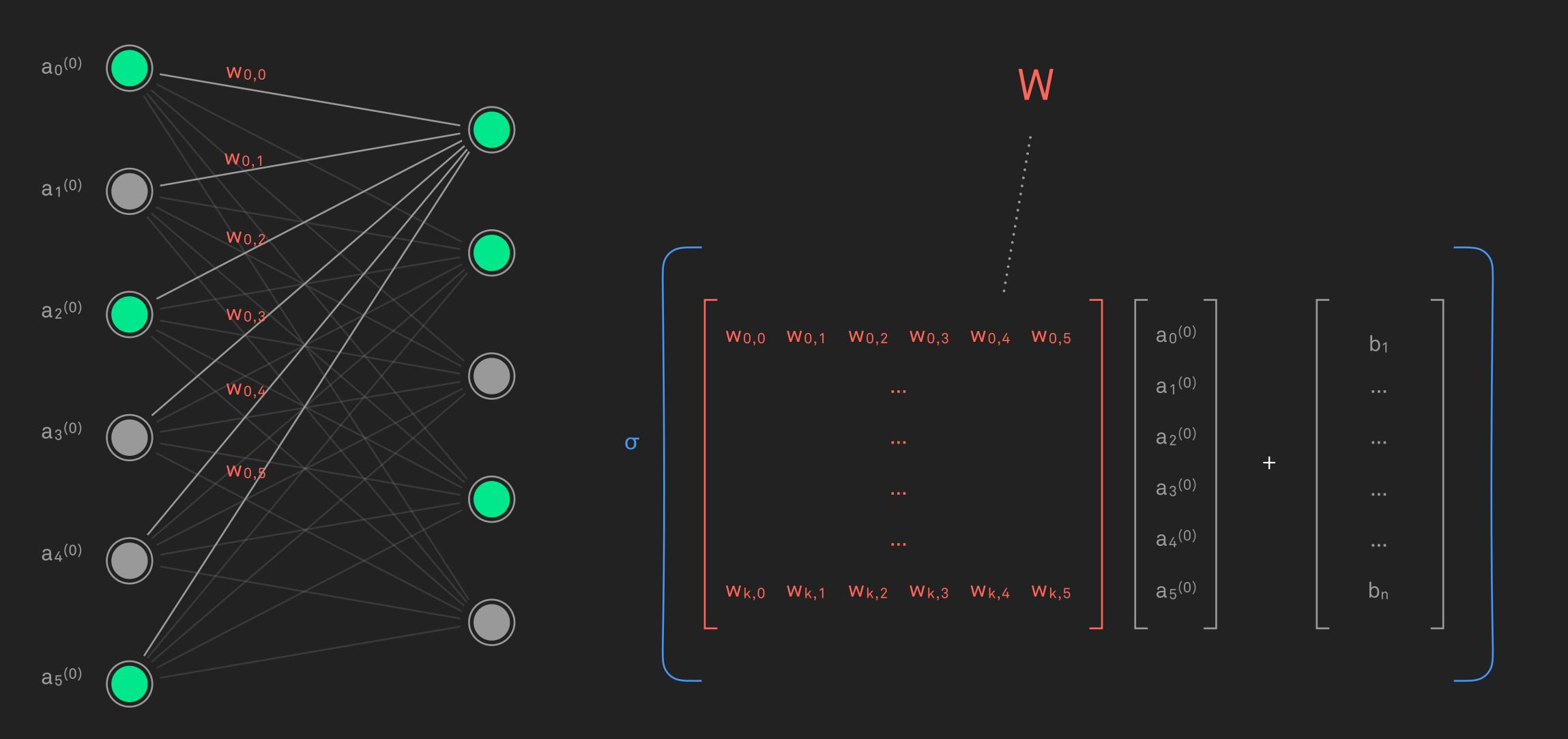


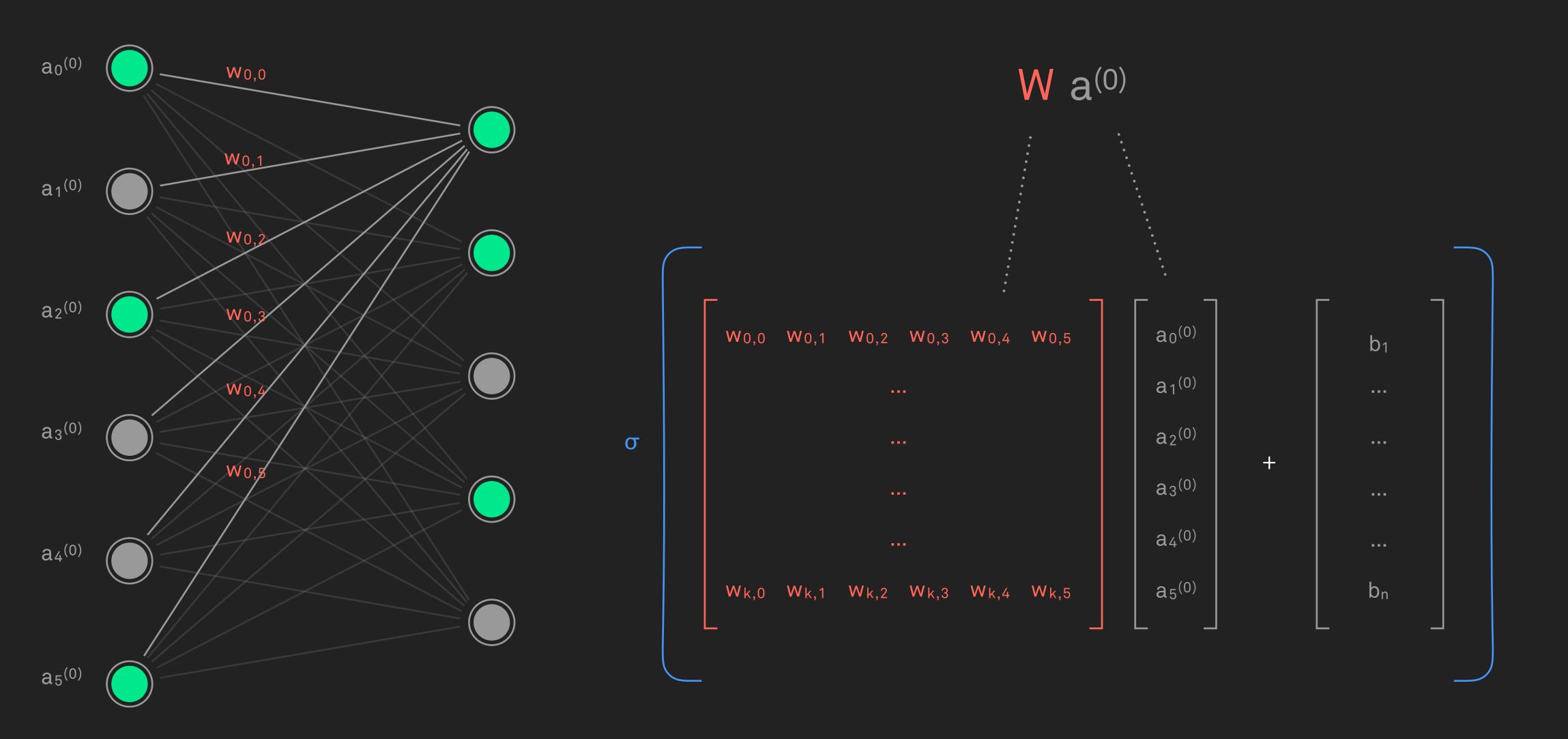


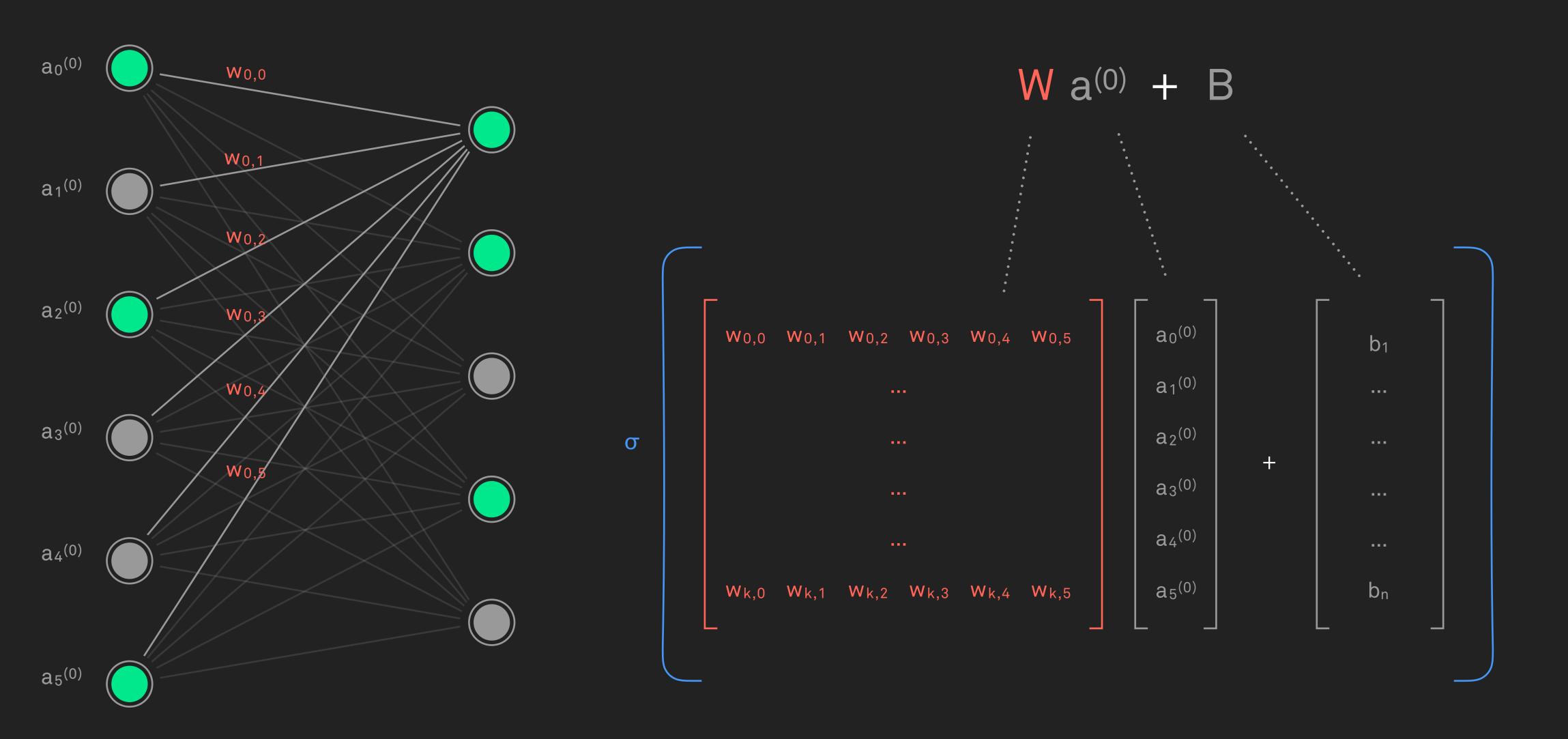


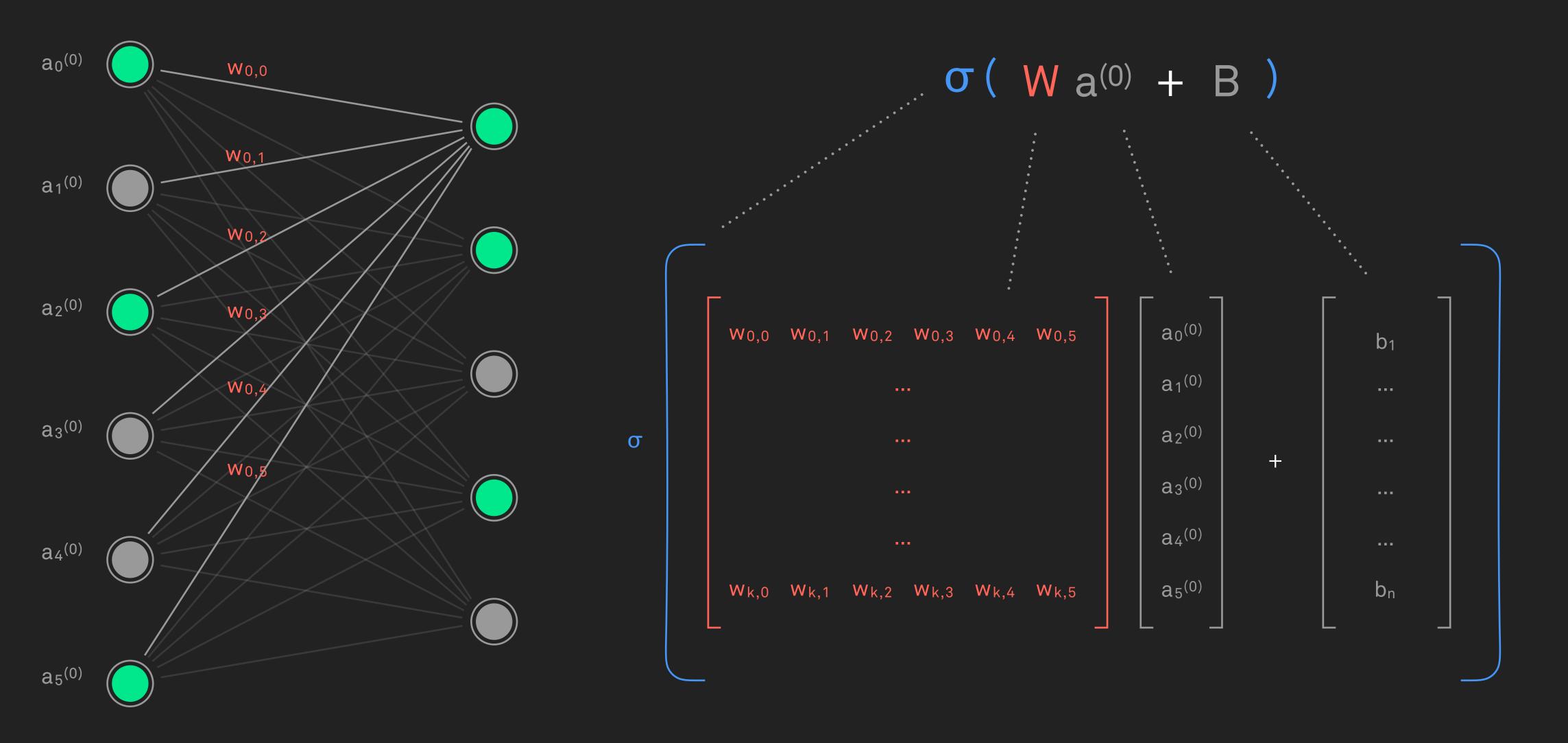


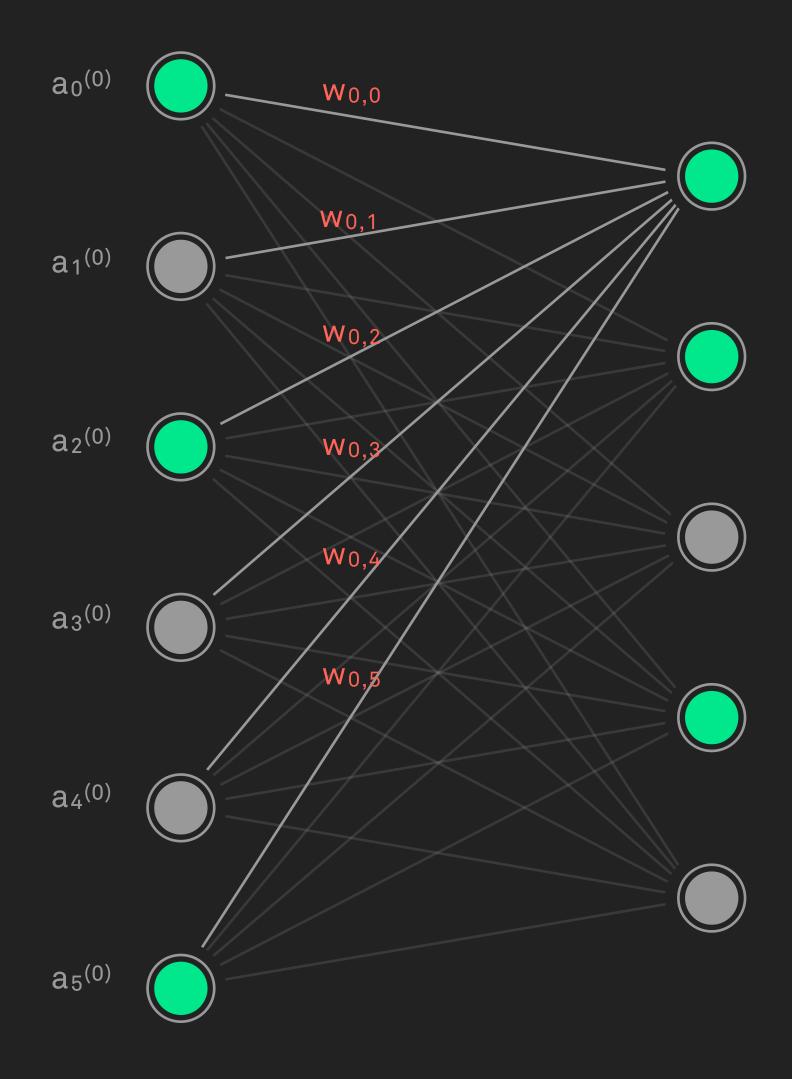








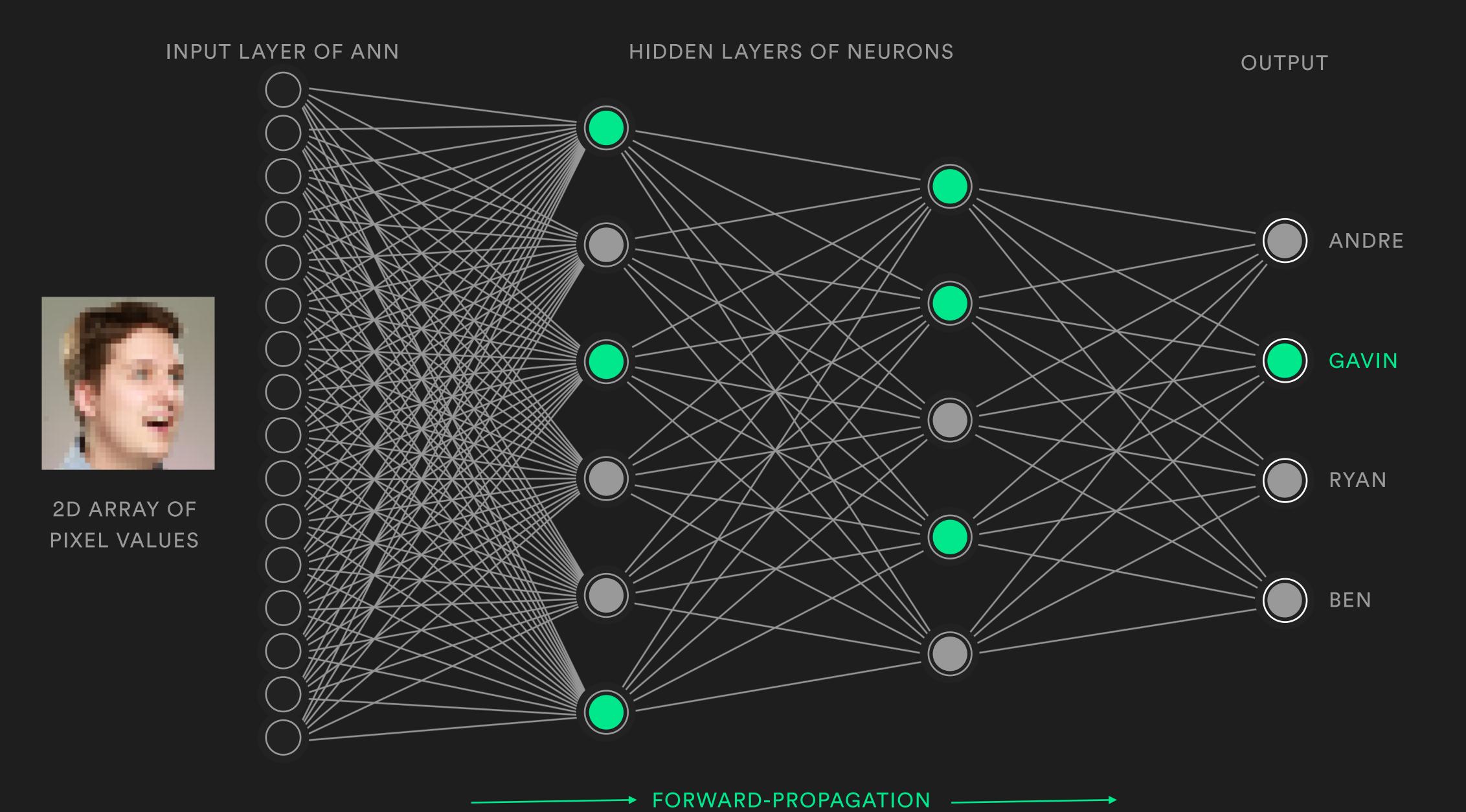




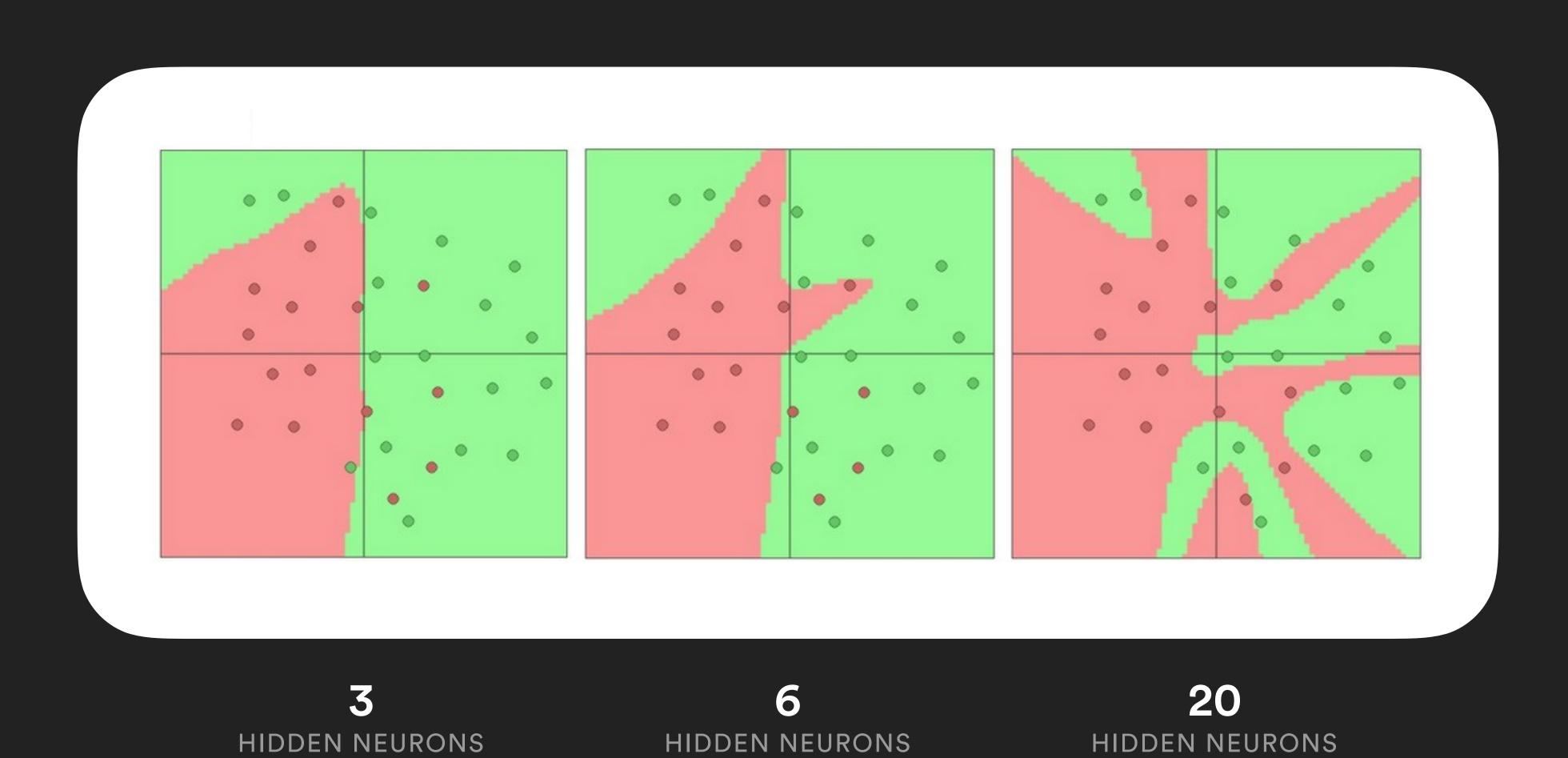
```
\sigma ( W a<sup>(0)</sup> + B )
```

```
class Network(object):
    def __init__(self, *args, **kwargs):
        #...yada yada, initialize weights and biases...

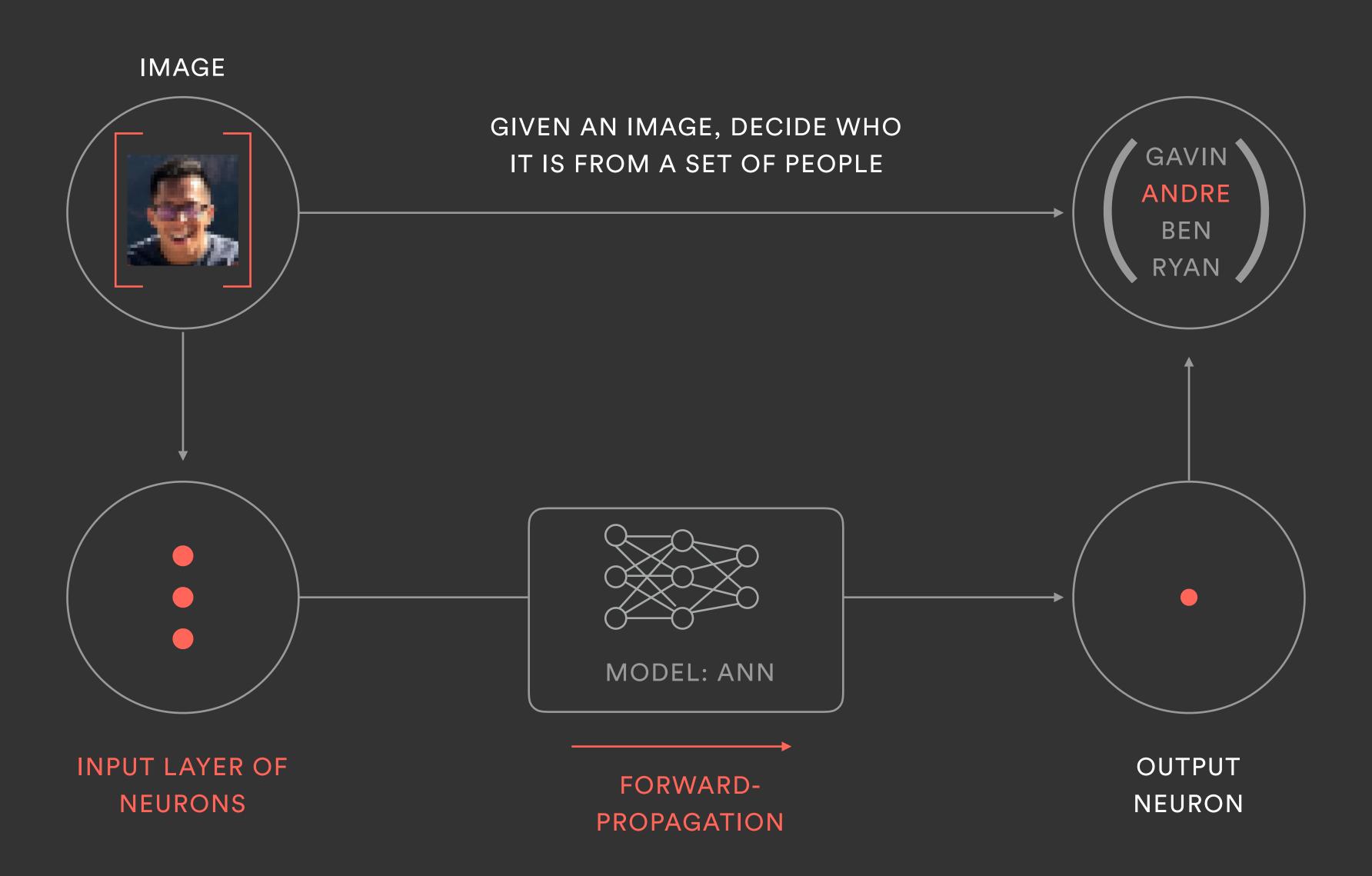
def feedforward(self, a):
    """Return the output of the network for an input vector a"""
    for b, w in zip(self.biases, self.weights):
        a = sigmoid(np.dot(w, a) + b)
    return a
```



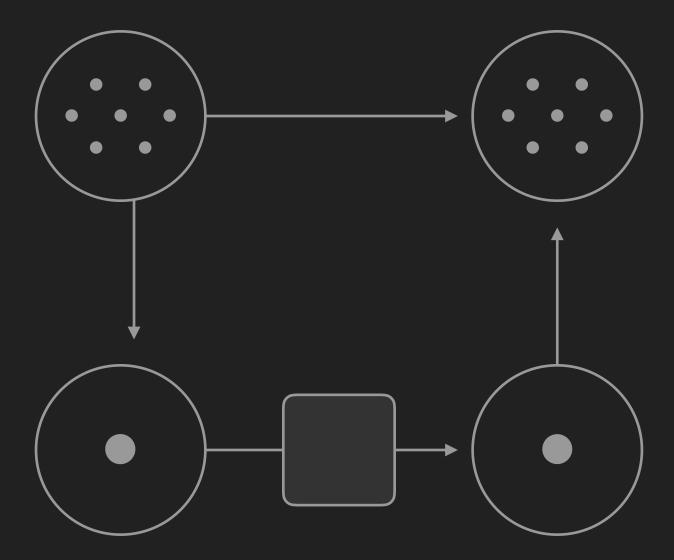
Larger Neural Networks can represent more complicated functions.

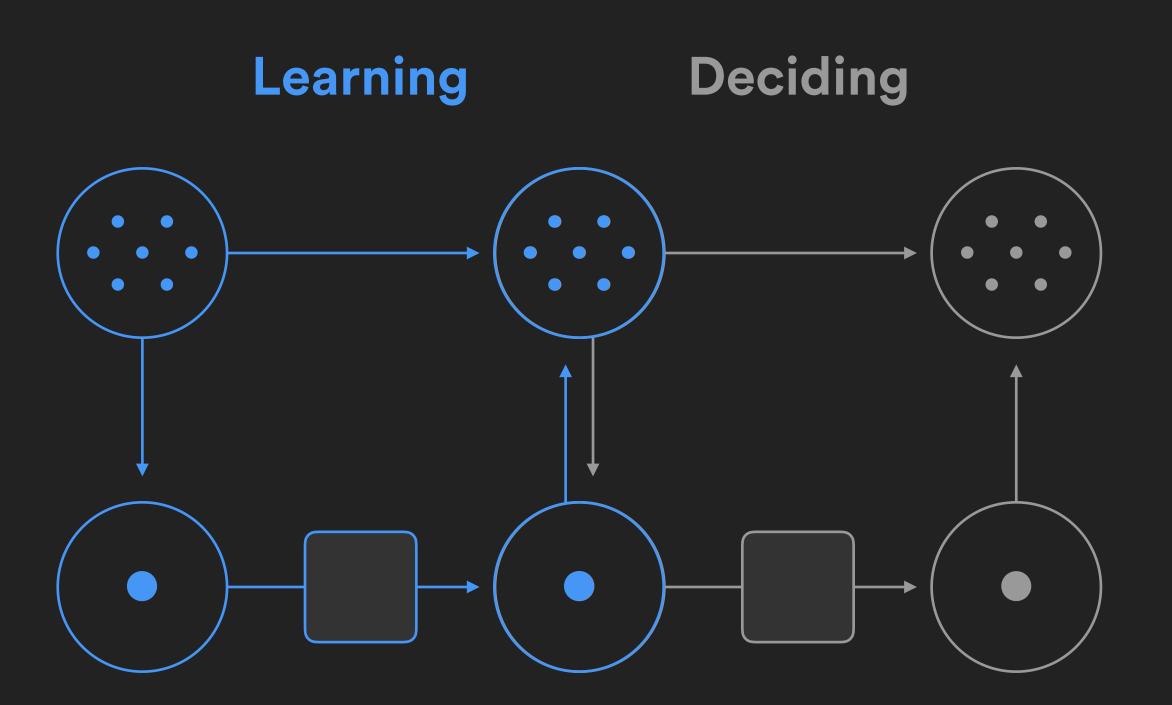


Decision Making

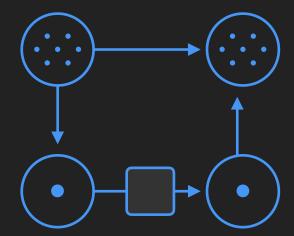


Deciding

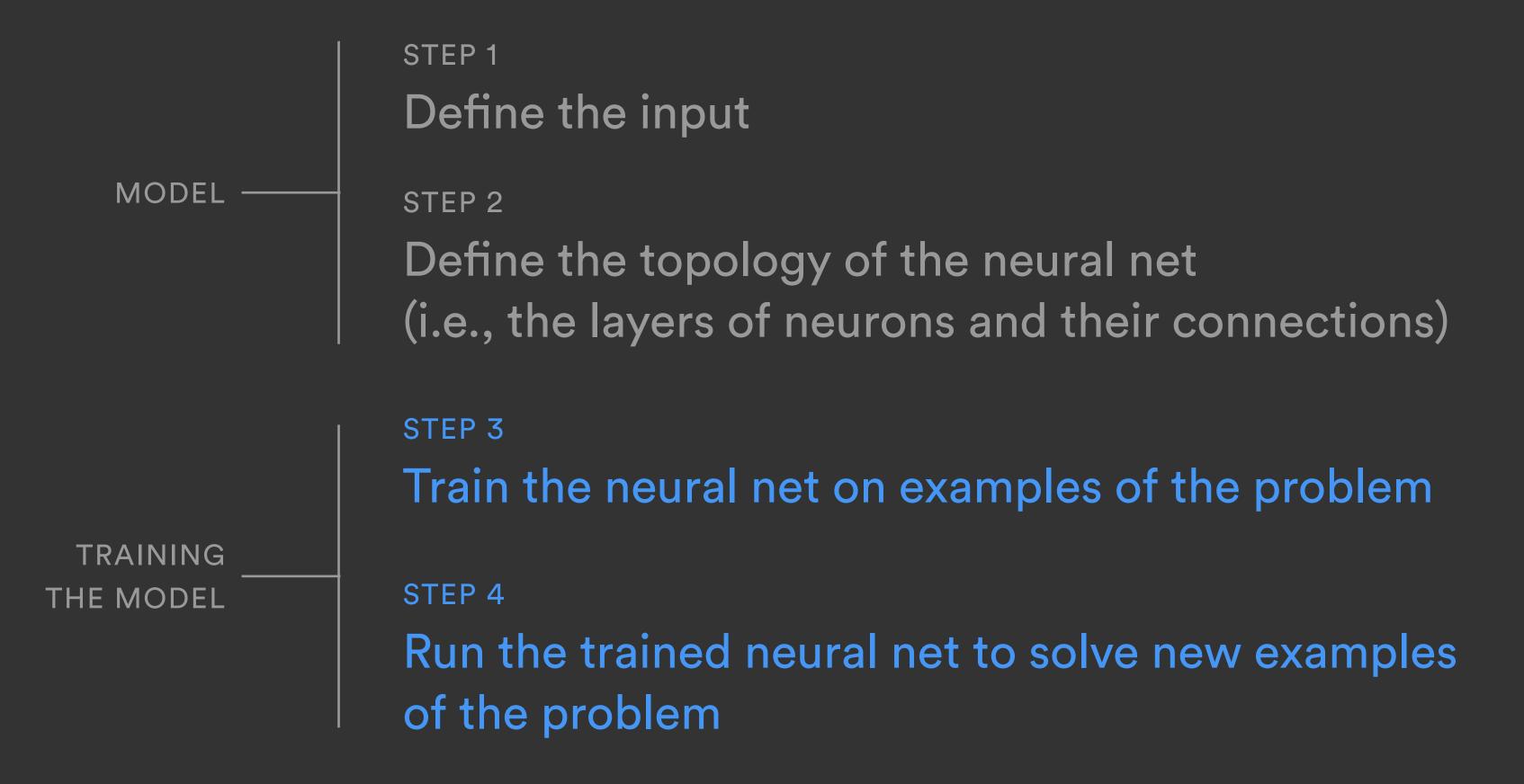




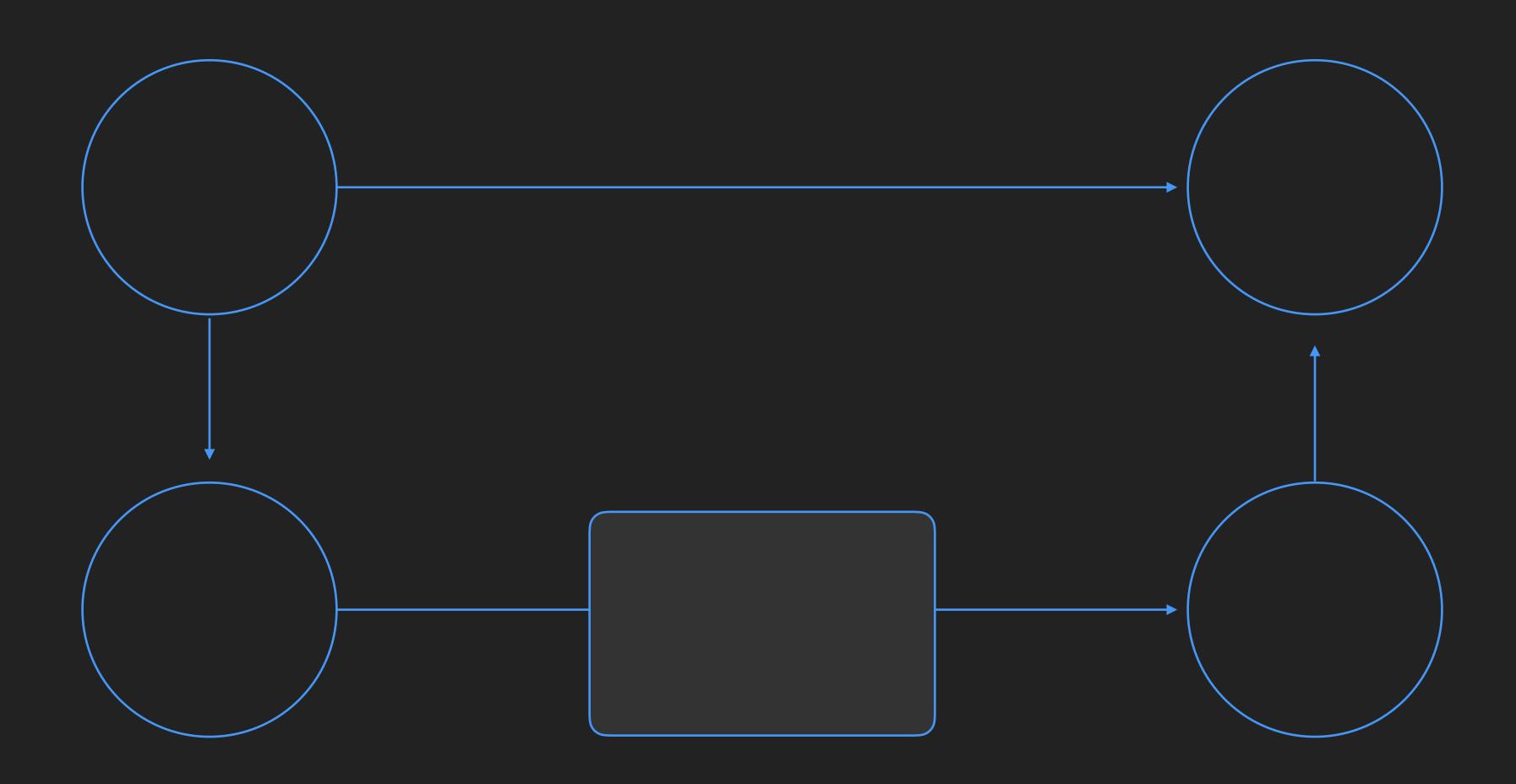
INTRODUCTION DECIDING LEARNING CORRECTNESS



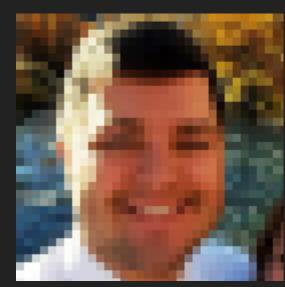
ANN Implementation Overview

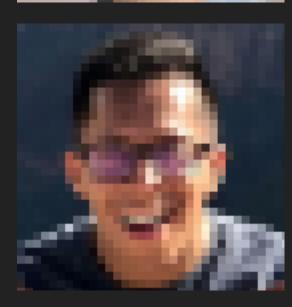


Learning



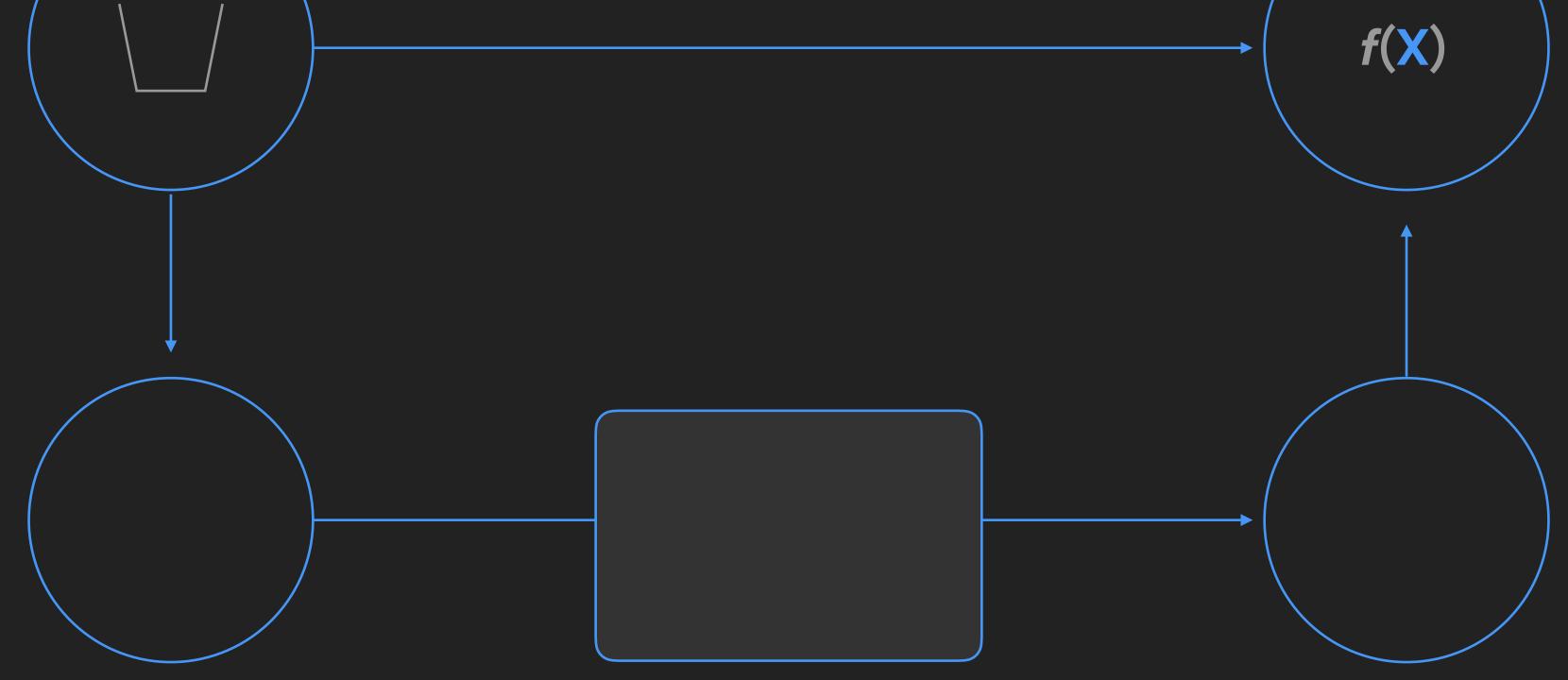
Learning TRAINING DATA BUCKET OF MODELS MODEL INSTANCE NORMS (COST FUNCTION) f(X)





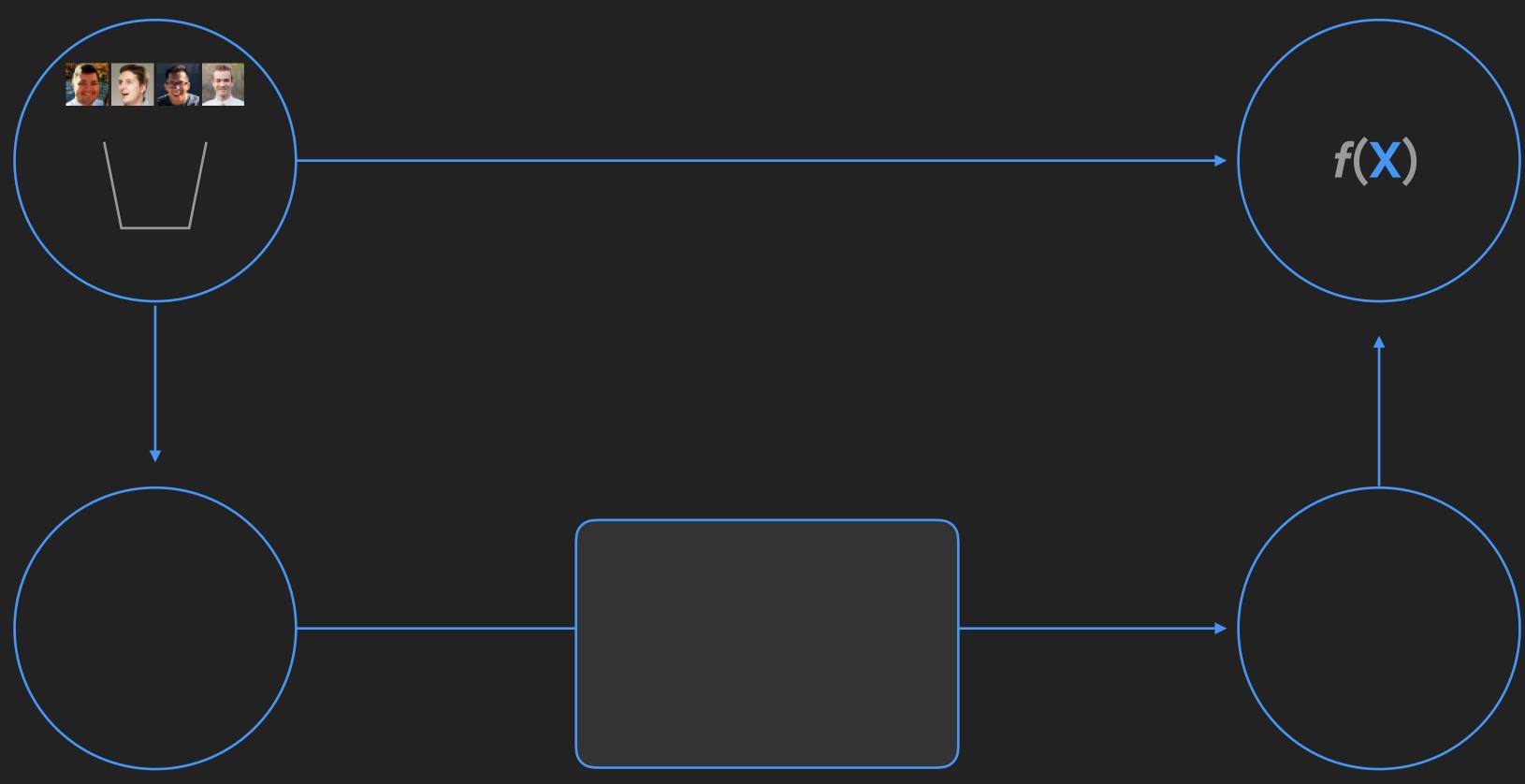
Learning

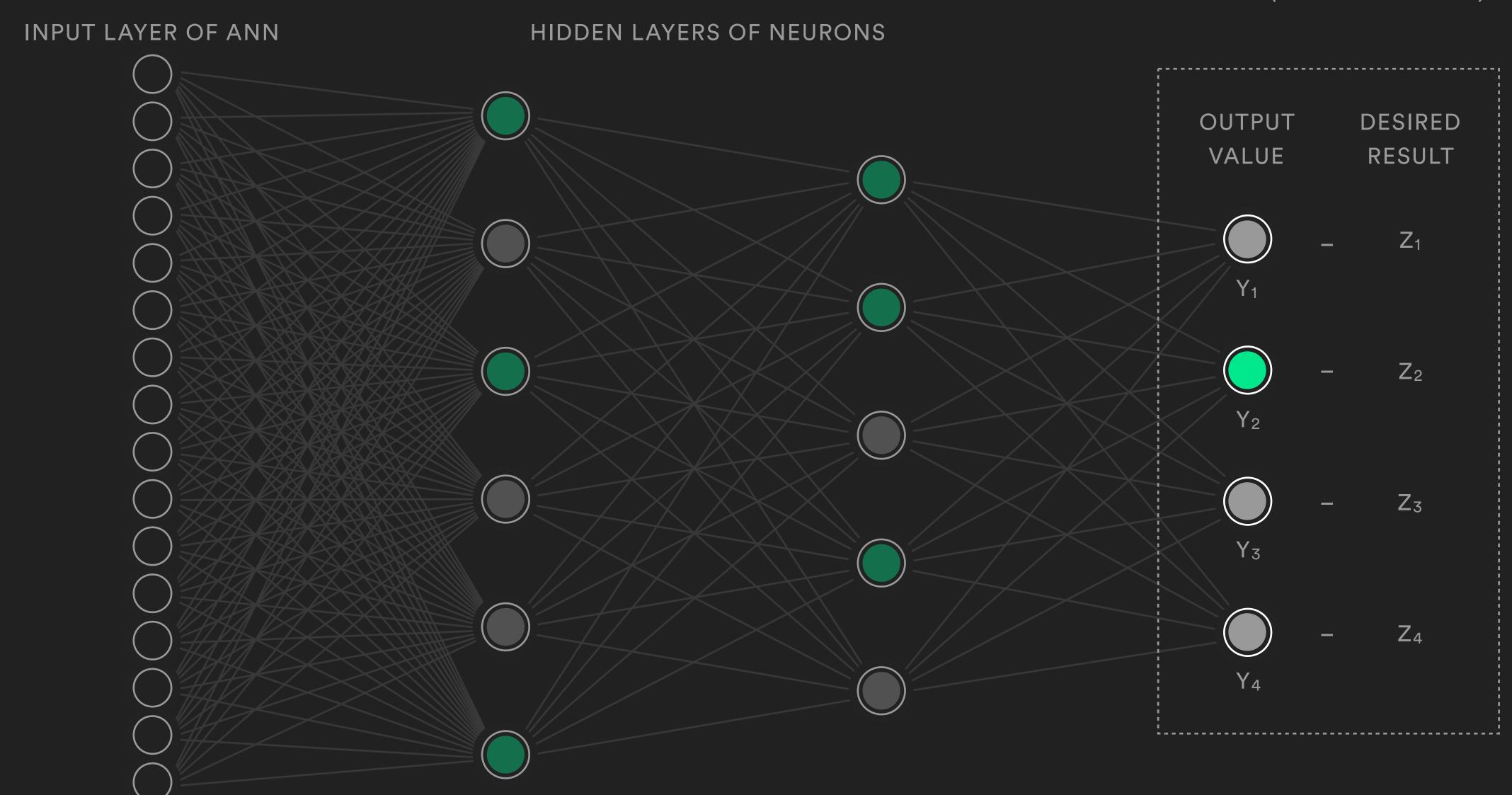
TRAINING DATA BUCKET OF MODELS MODEL INSTANCE NORMS (COST FUNCTION) f(X)



TRAINING DATA BUCKET OF MODELS NORMS (COST FUNCTION) Learning

MODEL INSTANCE





Cost Function

COST FUNCTION

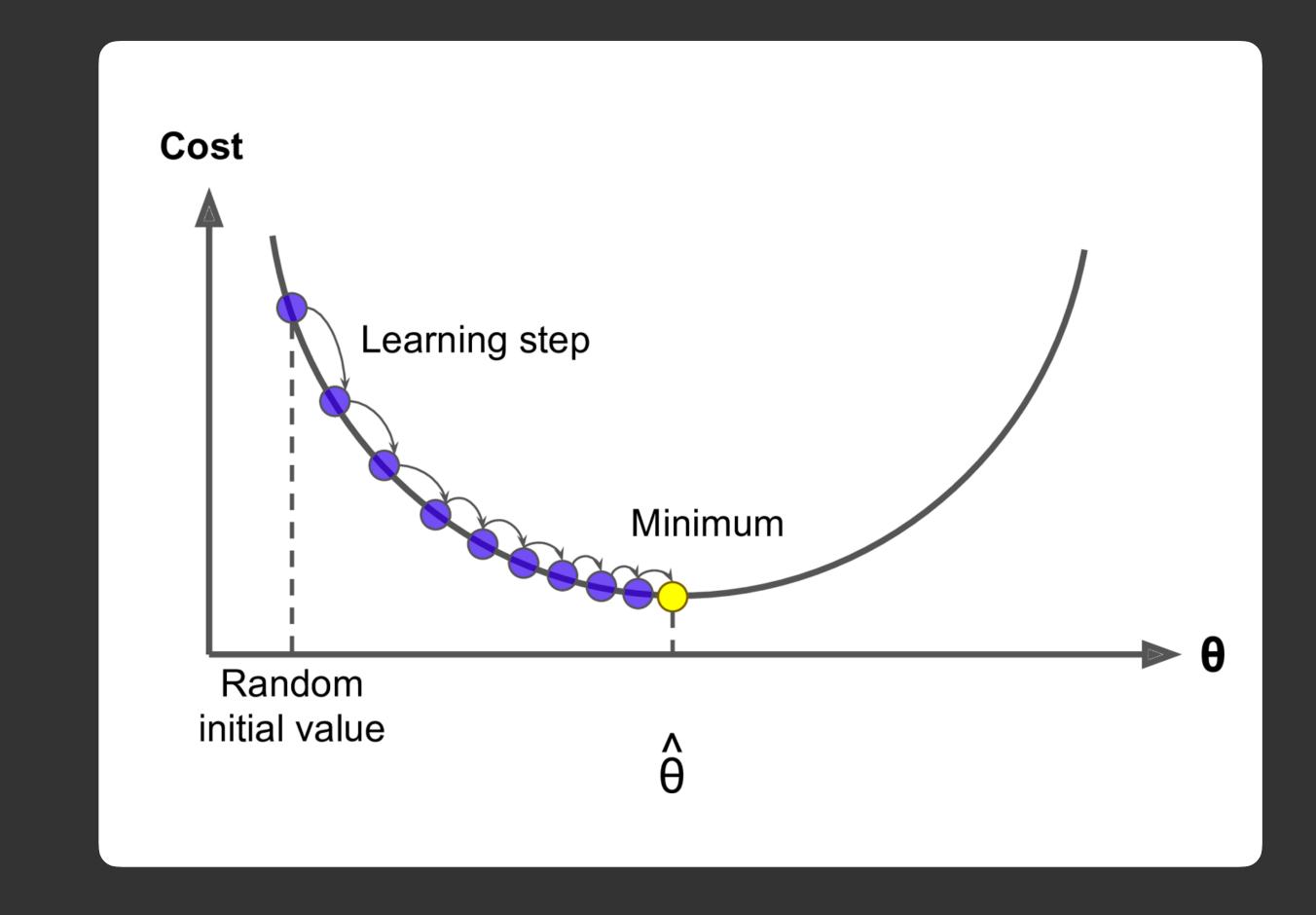
Looks at the outputs generated by the neural net and compares it to what the results *should* be

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

A neural net that produces an answer close to the desired answer will have a lower cost

GOAL

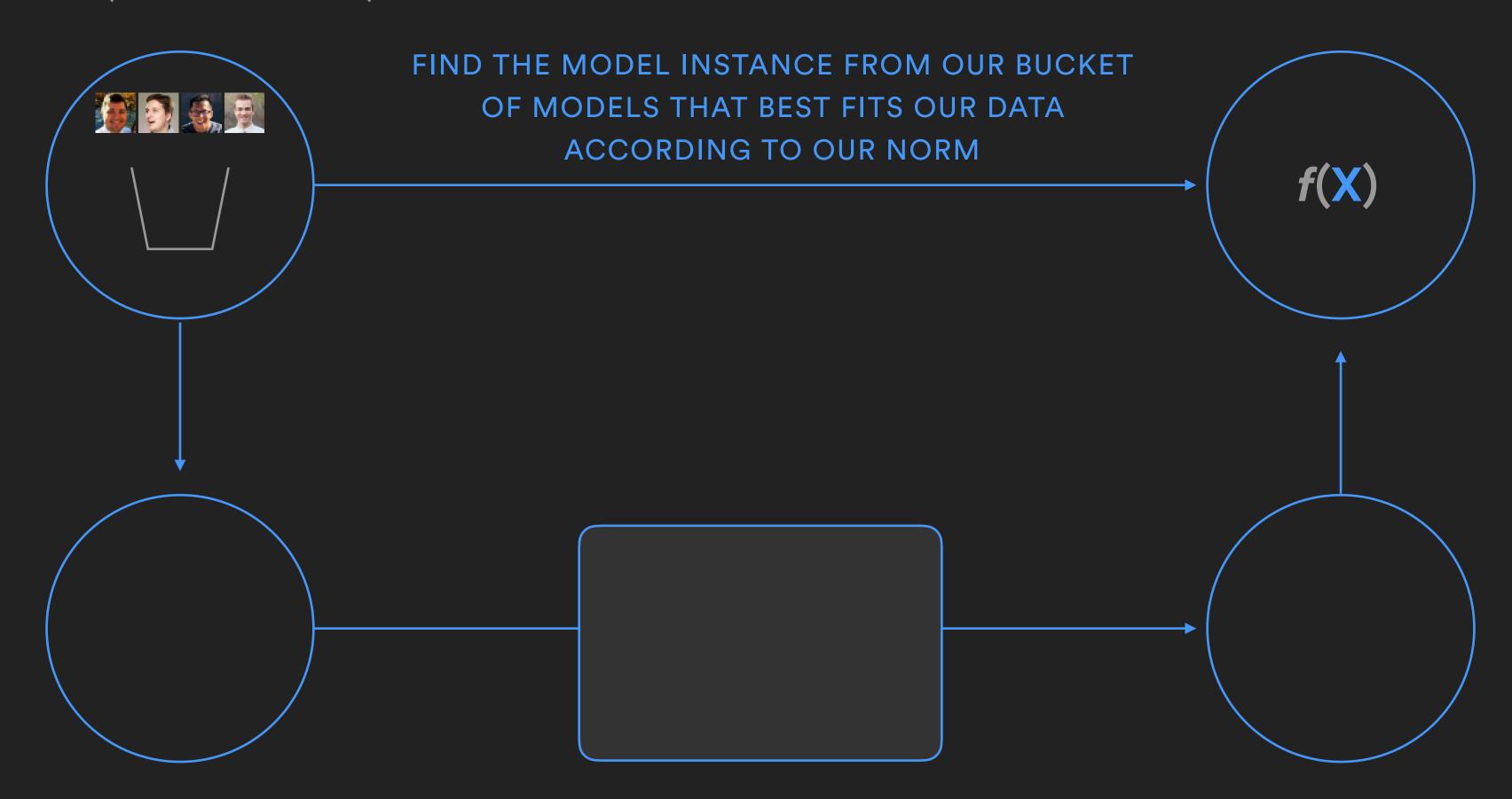
Find which weights and biases will minimize the cost function output, known as gradient descent



Learning

NORMS (COST FUNCTION)

MODEL INSTANCE



Learning

MODEL INSTANCE

NORMS (COST FUNCTION) FIND THE MODEL INSTANCE FROM OUR BUCKET OF MODELS THAT BEST FITS OUR DATA ACCORDING TO OUR NORM f(X)

ANN WITH INITIAL WEIGHTS

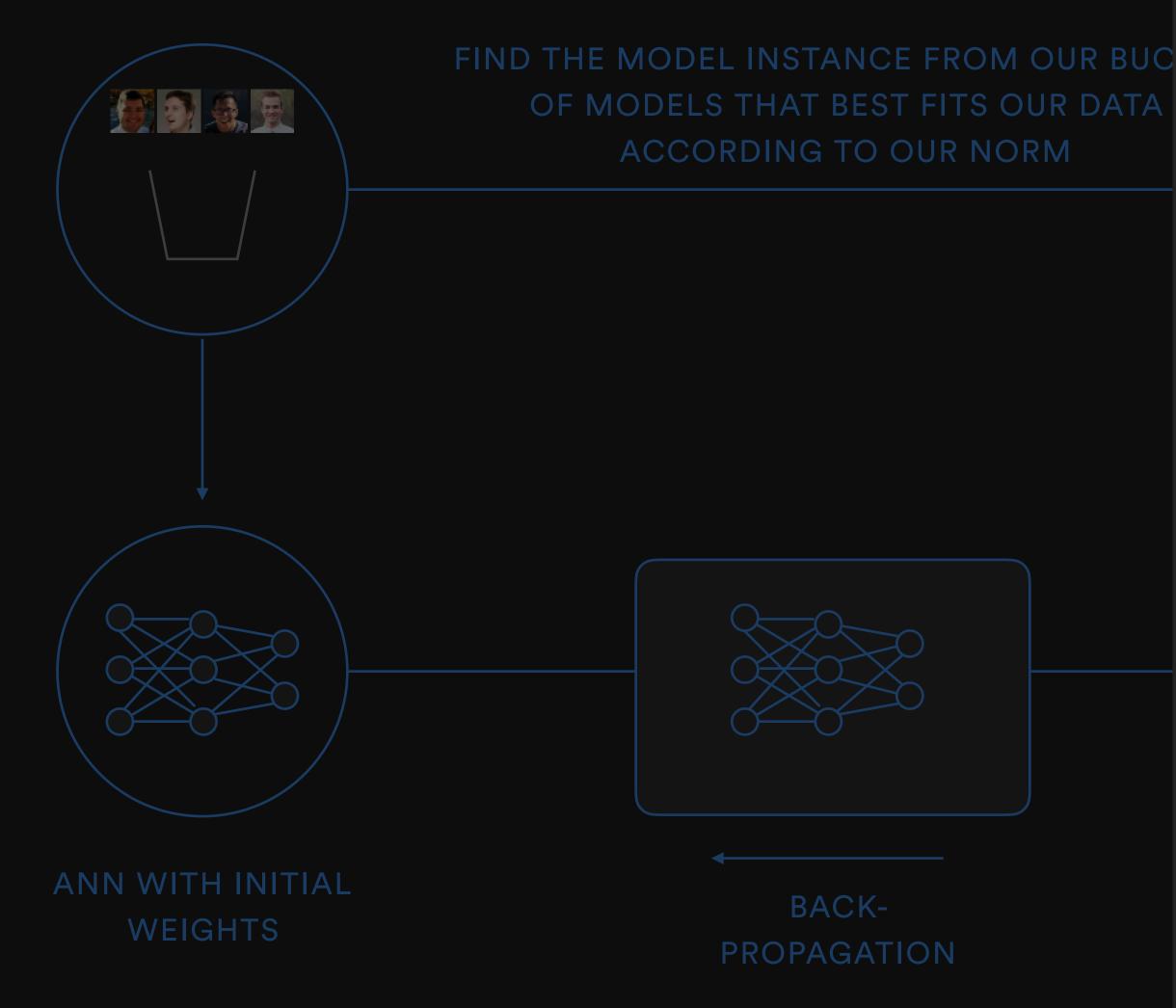
Learning

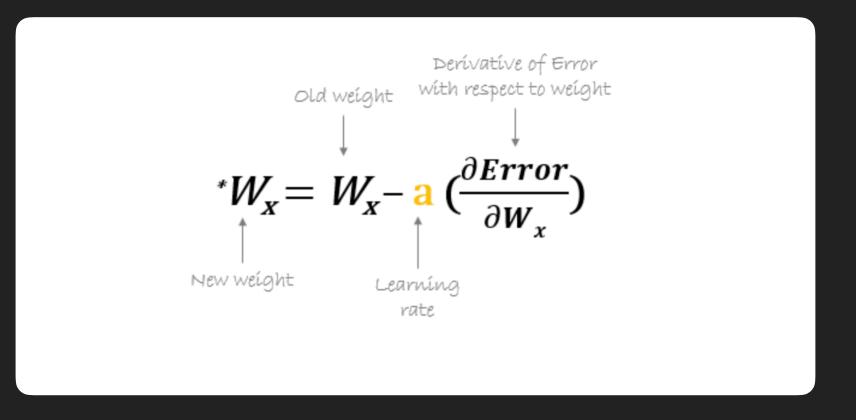
MODEL INSTANCE

NORMS (COST FUNCTION) FIND THE MODEL INSTANCE FROM OUR BUCKET OF MODELS THAT BEST FITS OUR DATA ACCORDING TO OUR NORM f(X) ANN WITH INITIAL BACK-WEIGHTS **PROPAGATION**

Learning

NORMS (COST FUNCTION)

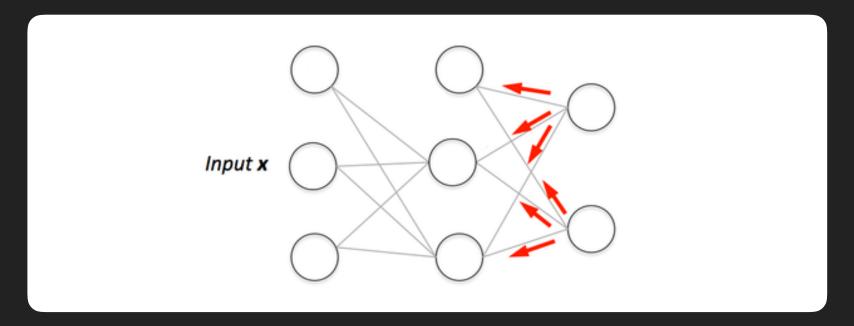




Sums up the total cost of each output:

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

Computes partial derivatives of of the total cost function with respect to any weight w or bias b in the network.

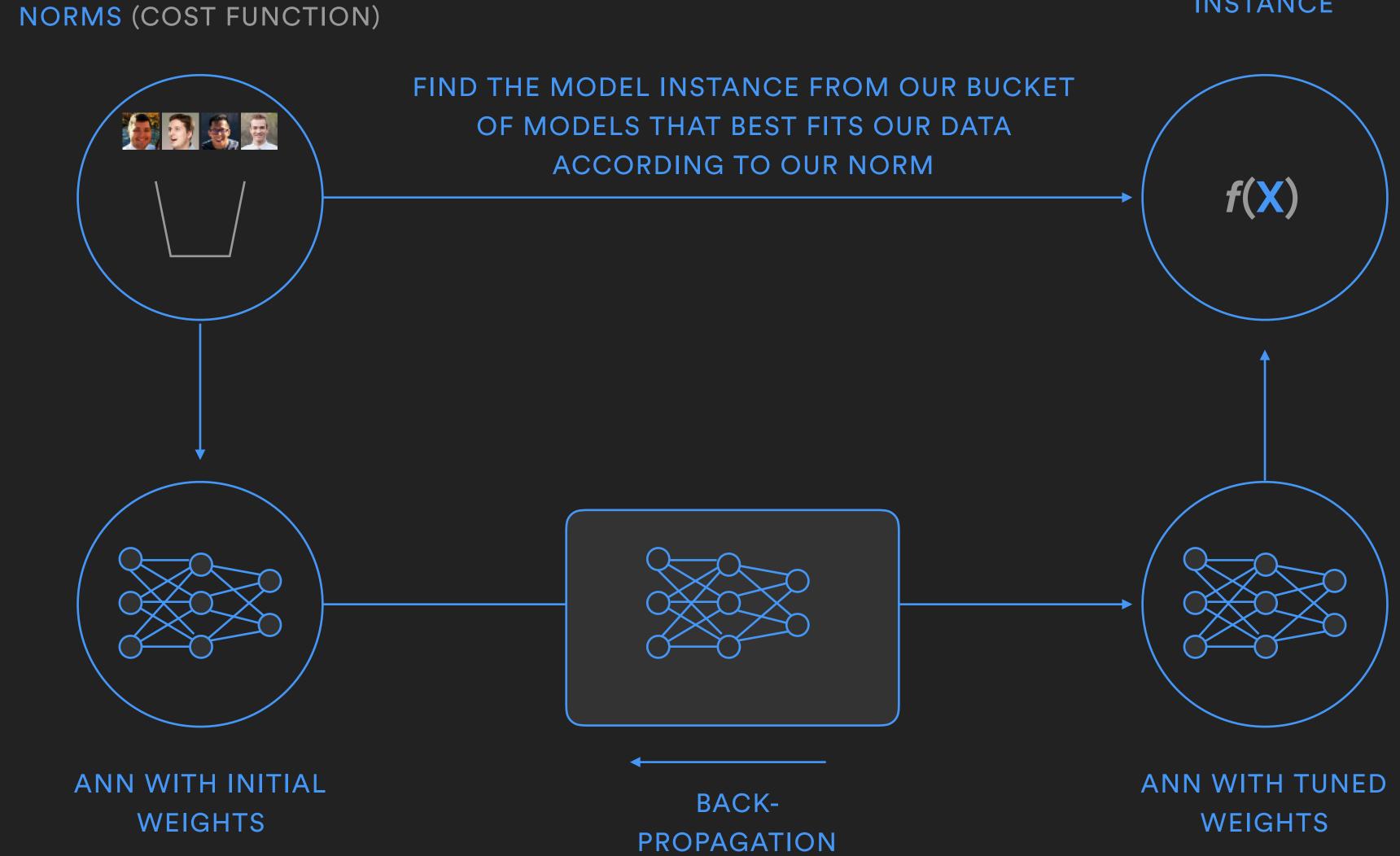


Applies small changes to the weights and biases in each layer.

Automatically adjusts the weights between each set of data. No manual tuning required

Learning

MODEL INSTANCE



Using Evolutionary Algorithms in ANNs

STEP 1

Generate population of *n* random initial sets of weights and biases. Known as *species*.

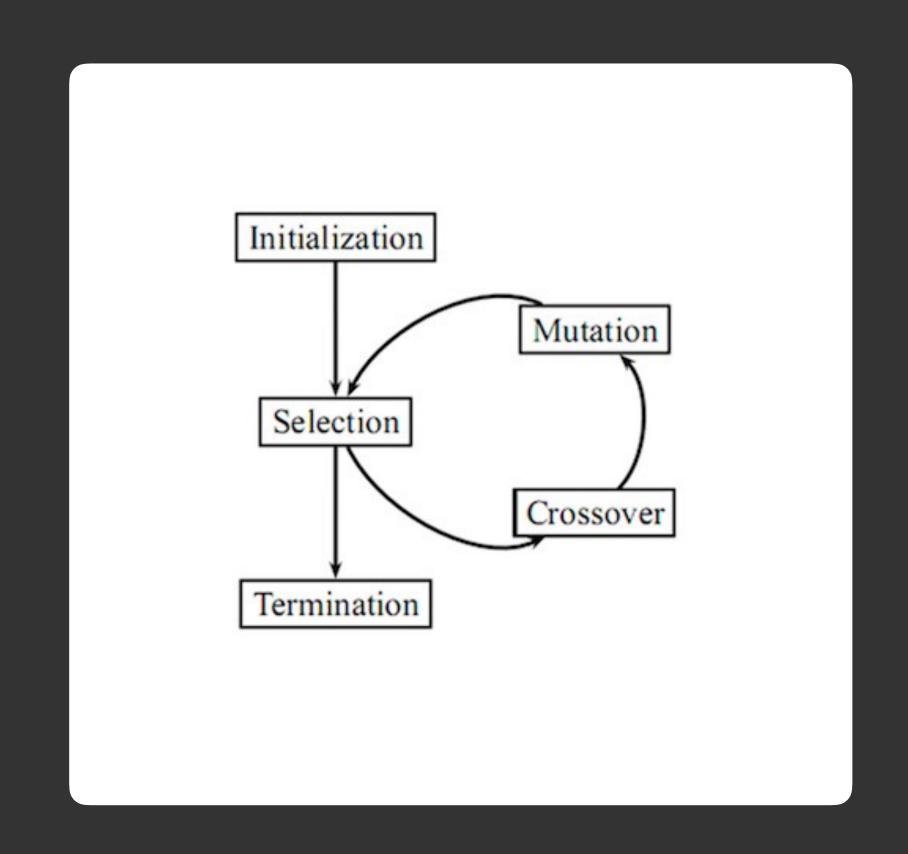
STEP 2

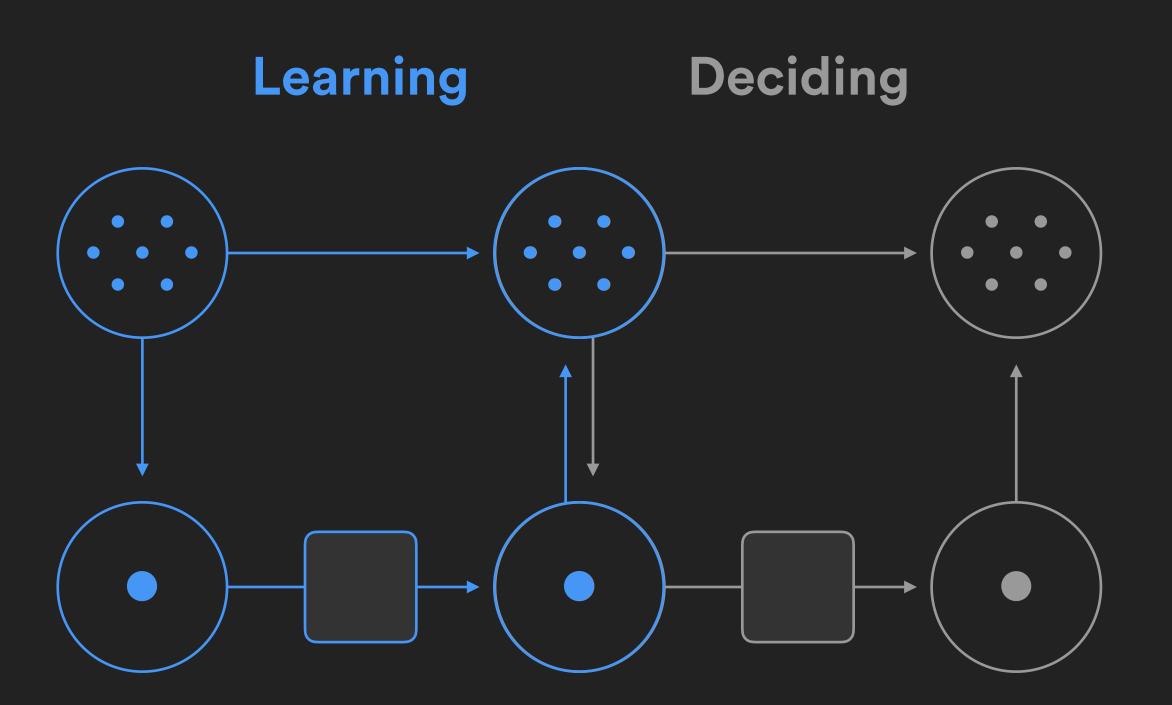
Evaluate the fitness of each species in that population (time limit, lowest cost achieved, etc.)

STEP 3 - REPEAT THE FOLLOWING

- a. Select the best-fit individuals for reproduction. (Parents)
- b. Breed a new generation of new species through crossover and mutation.
- c. Evaluate the individual fitness of new individuals.
- d. Replace least-fit population with new individuals.

Over time, this process selects the best set of weights and biases it can, finding a local minimum of the function and reducing error

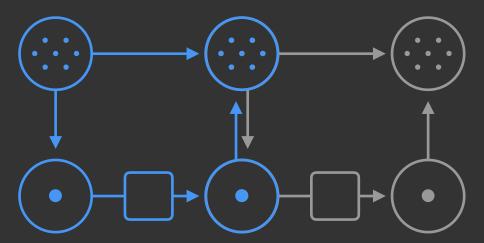




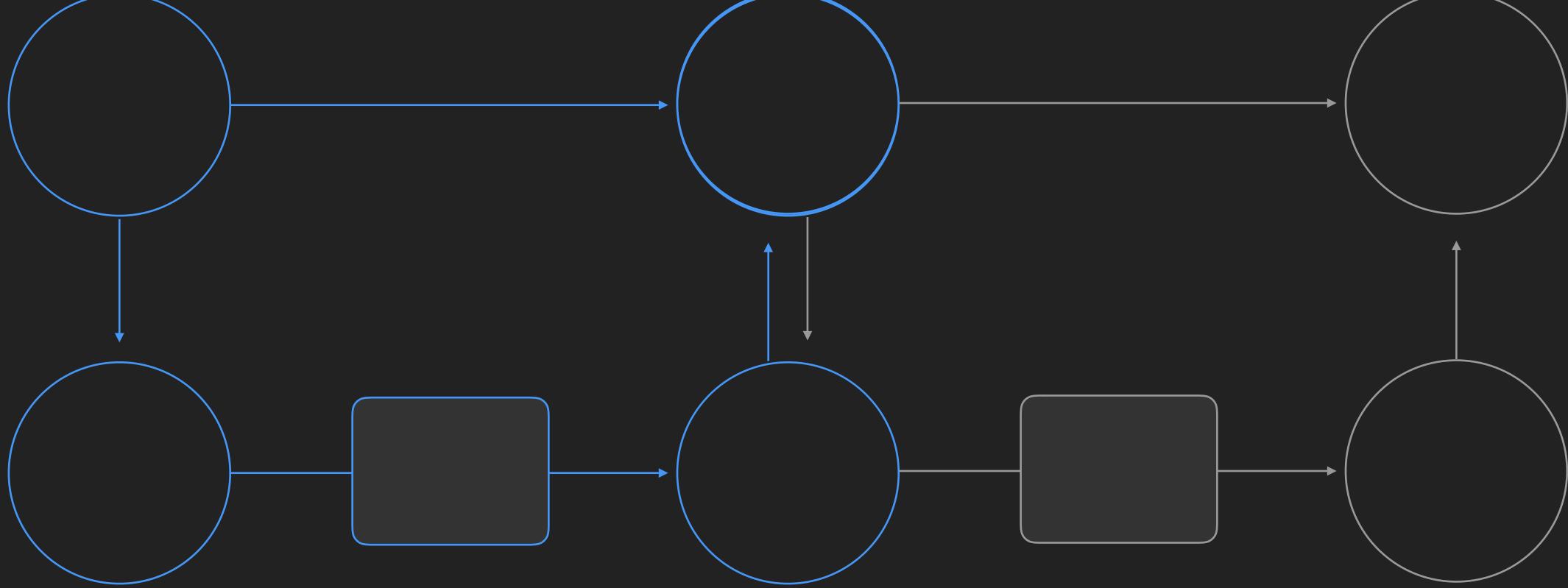
INTRODUCTION DECIDING

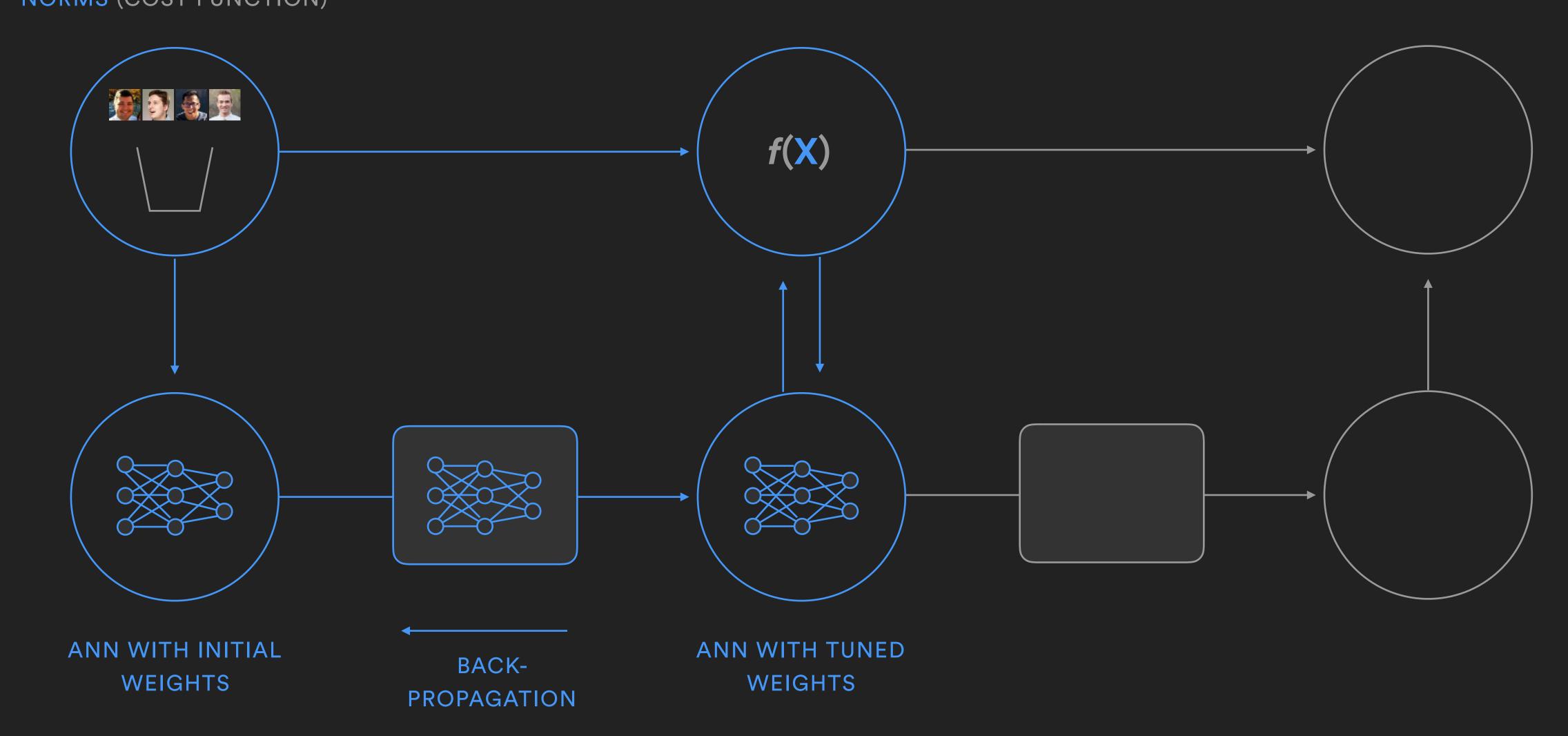
LEARNING

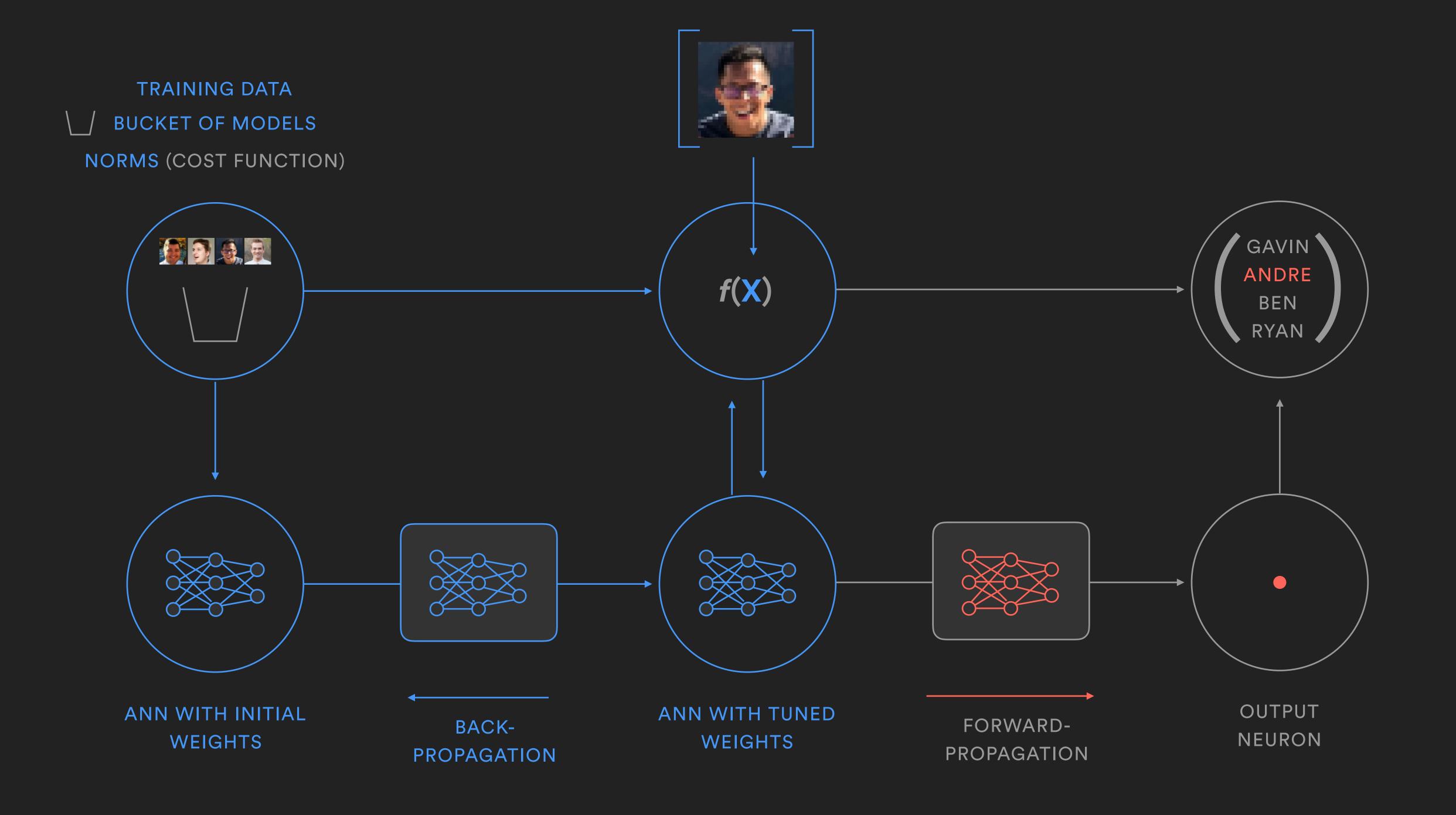
CORRECTNESS

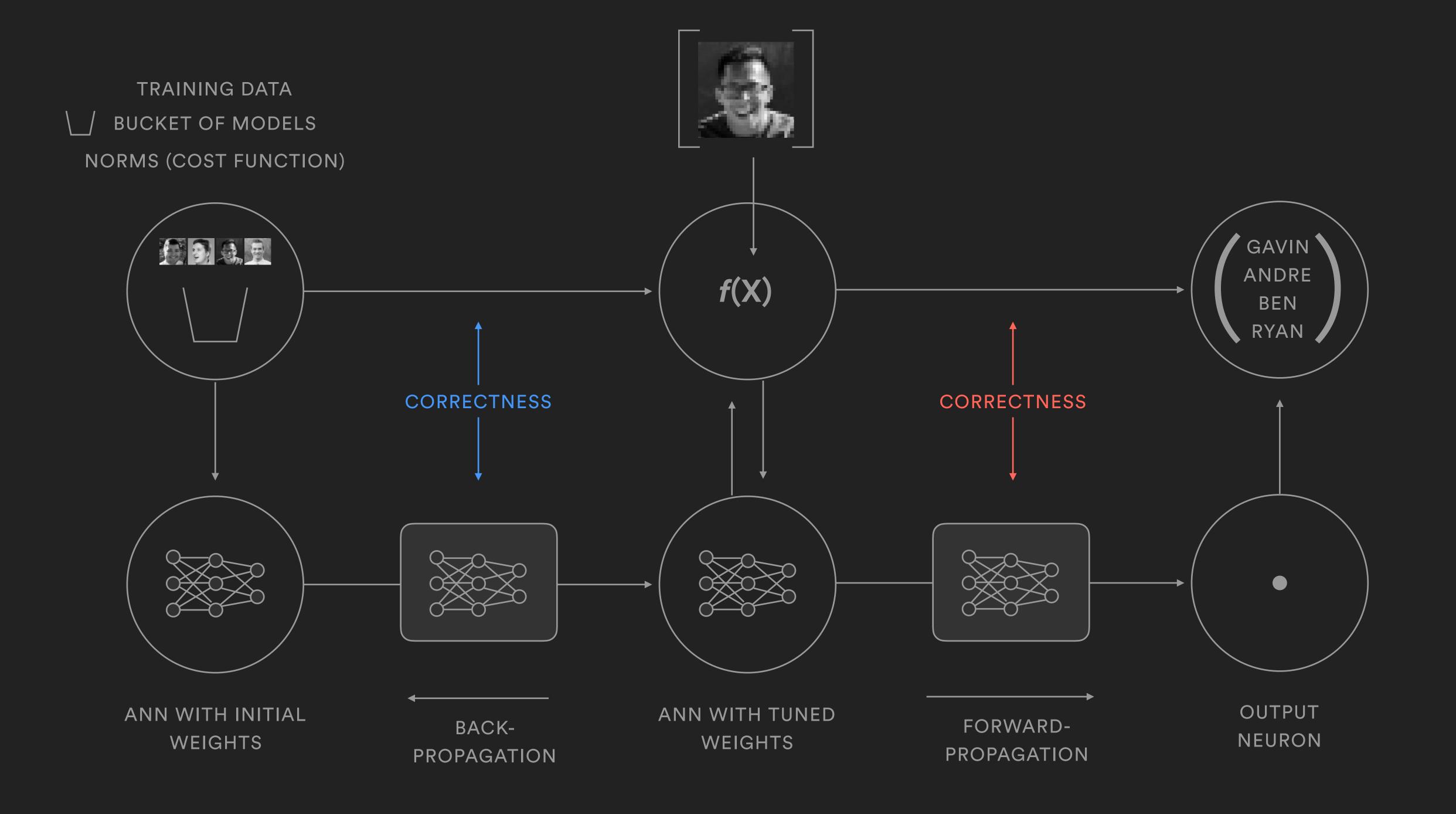


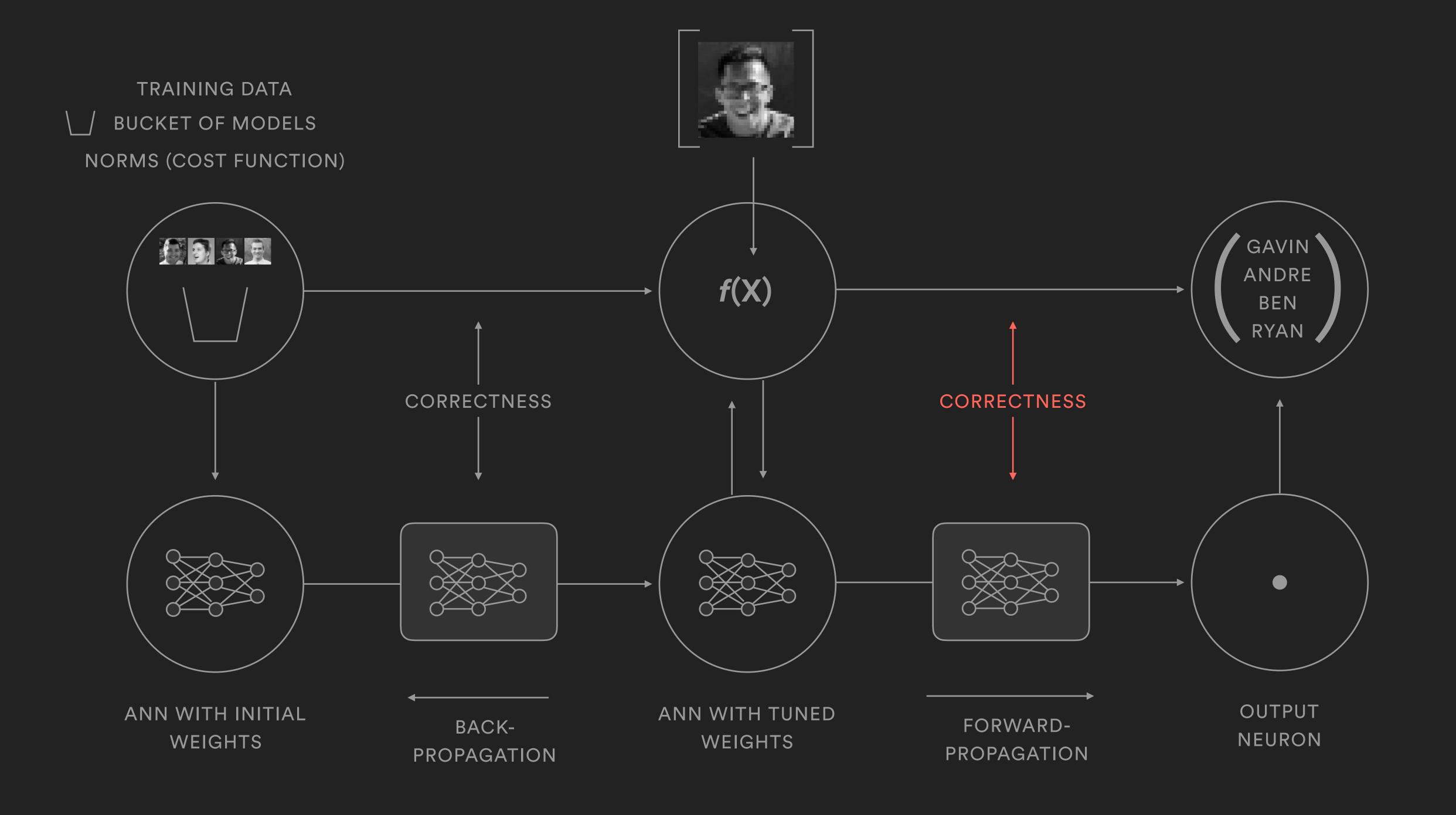
Learning Deciding









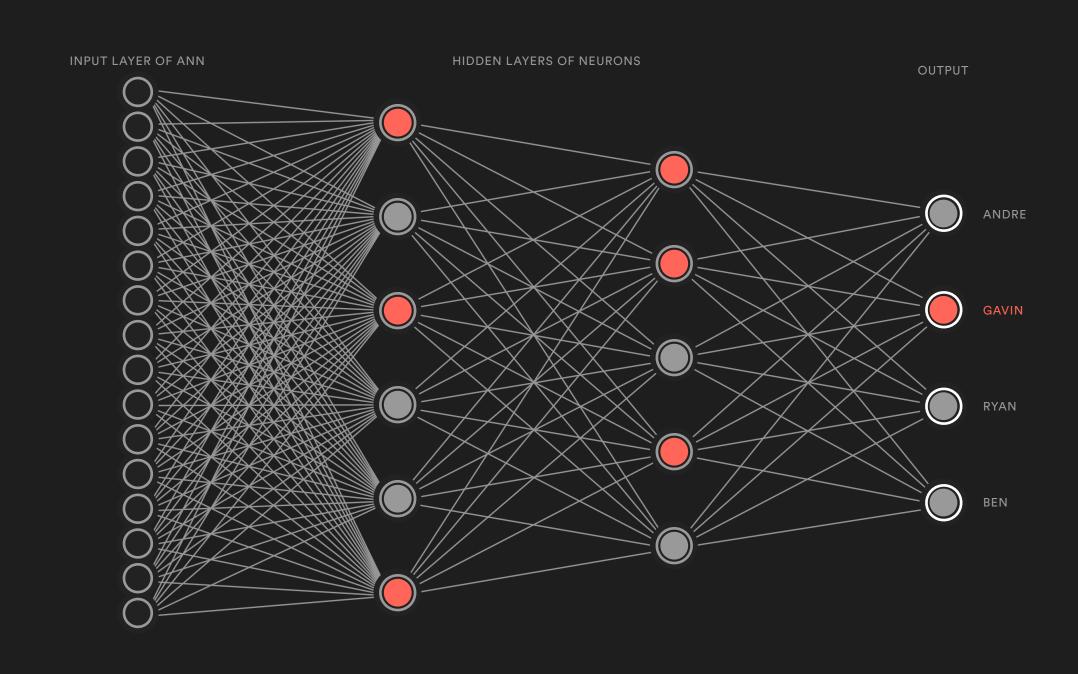


From this a skeleton can be extracted

From this a skeleton can be extracted

Universal approximation theorem

A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of **R**, under mild assumptions on the activation function.



The theorem in mathematical terms:

Let $\varphi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$, where $i=1,\cdots,N$, such that we may define:

$$F(x) = \sum_{i=1}^N v_i arphi \left(w_i^T x + b_i
ight)$$

as an approximate realization of the function f where f is independent of φ ; that is,

$$|F(x)-f(x)|$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

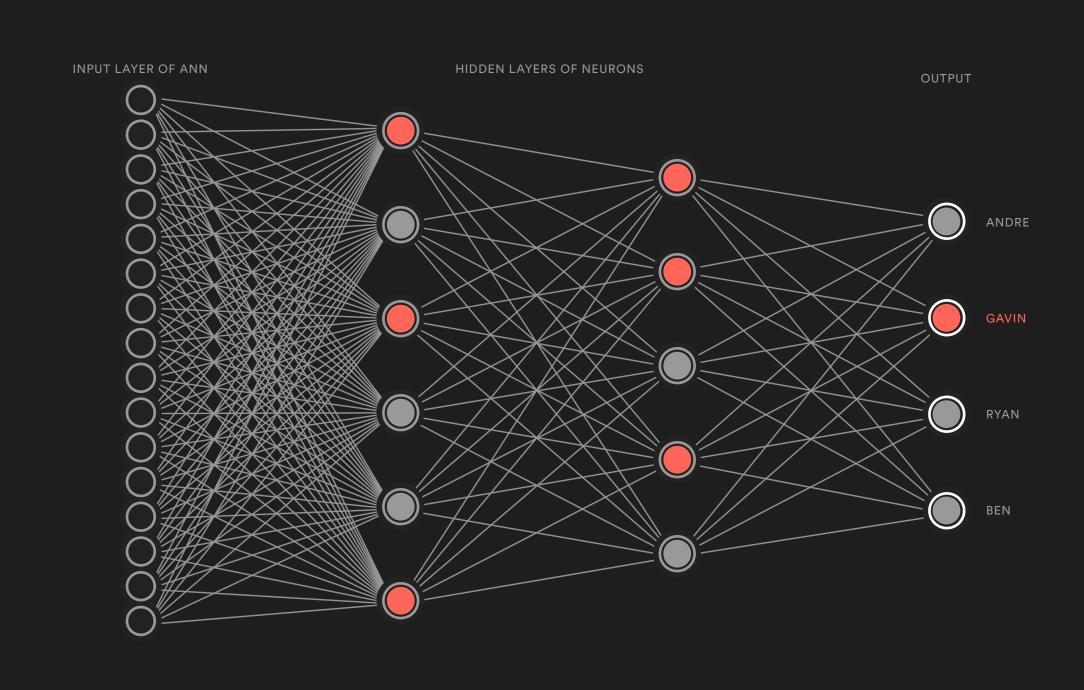
Universal approximation theorem

UAT AND ANN CORRECTNESS SIMPLIFIED

Any continuous function can be approximated by an ANN with a finite number of neurons

WHAT WE LEARN FROM ANN CORRECTNESS

A correct result can't be guaranteed A 'Good' result is guaranteed to be possible

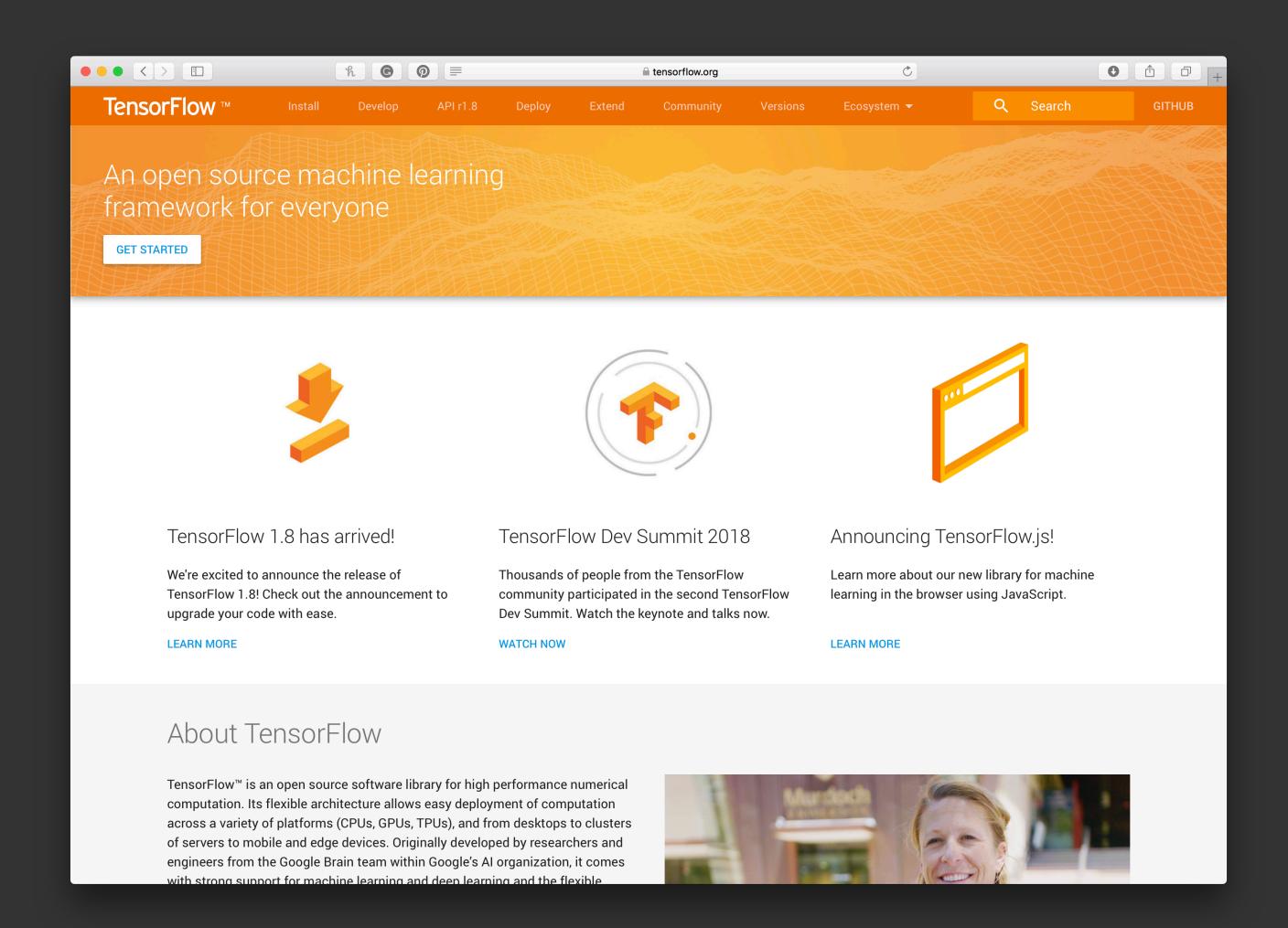


"A feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly."

— Ian Goodfellow

Resources

- Tensor Flow
- Pytorch
- MXNet
- Caffe
- Theano
- Amazon Machine Learning



"Little more than speculation and wishful thinking ties the actual work in Al to the mysterious workings of the human mind."

—Jerry Kaplan, an Al professor at Stanford University

Comparison between ANNs and Brains

TOO NEAT

Human-built networks prioritize mathematical elegance and power. Brains do not.

TOO SIMPLE

One neuron in the brain is as complex as a supercomputer

TOO FEW

Number of neurons in the brain is roughly equivalent to number of stars in the galaxy (about 85 Billion) Each Neuron is wired to 1000 others. About 85 trillion connections synapses.

TOO DRY

ANN researchers typically ignore biophysics

Biological Neuron Network

Purely feedforward. Brains contain feedback connections in various directions, but each on his strictly one-way

Number of neurons in the brain is roughly equivalent to number of stars in the galaxy (about 100 Billion)

Each Neuron is wired to 1000 others. About 100 trillion connections (synapses)

Artificial Neuron Network

Can apply back-propagation

Top-down organization

Where the computational procedure is constructed according to some well-defined and clearly understood computational procedure, where this procedure provides a clear cut solution to some problem at hand. (Euclid's Algorithm)

Bottom-up organization

Clearly defined rules are not specified in advance, but instead there is a procedure laid down for the way that the system is to 'learn' and to improve its performance according to its 'experience'. Thus the rules are subject to continual modification. (Comparing results of algorithm to correct answers as in ANNs)

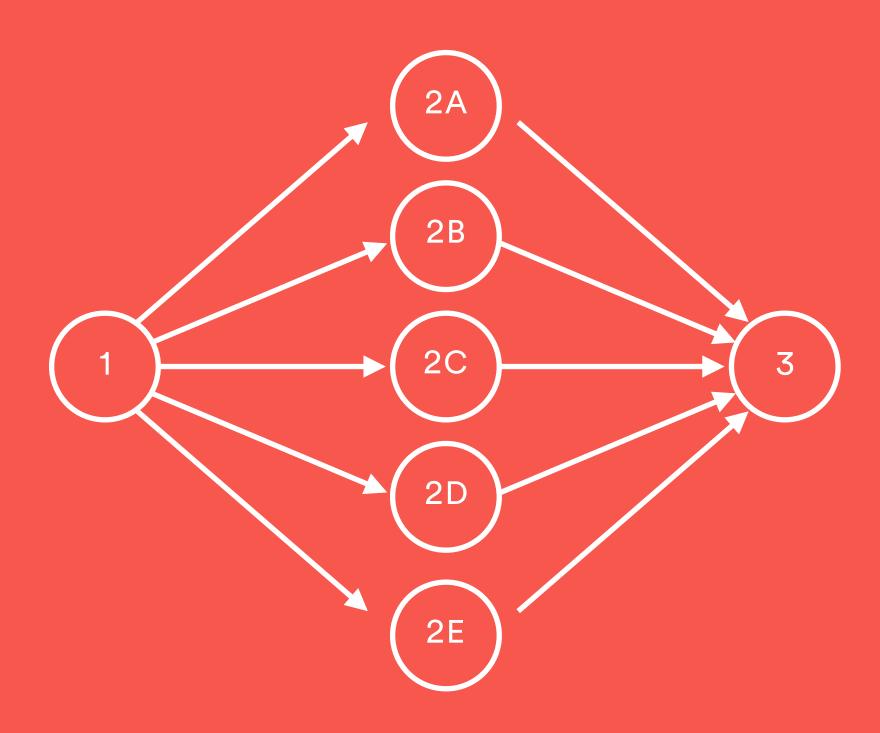
AKA GOFAI NOUVELLE AI

Serial Architecture

STEP-BY STEP

Parallel Architecture

DOES MANY INDEPENDENT
COMPUTATIONS SIMULTANEOUSLY.



Universal approximation theorem

For every function there exists an ANN with some hidden layer that approximates that function.

Assumes that you can have an infinite number of neurons.

We know of no way of determining the Model of the hidden layers in the neural networks.

