Artificial Neural Networks

INTRODUCTION DECIDING LEARNING CORRECTNESS

Learning Model

Learning Model

LEARNING ALGORITHMS MODEL CLASSES

| | | |

MACHINE LEARNING SYSTEM IDENTIFICATION RELATIONS FUNCTIONS

| | | | | |

LINEAR BACK- K-MEANS DYNAMIC NEURAL MAPS LINES
REGRESSION PROPAGATION SYSTEMS NETWORKS

What is an Artificial
Neural Network (ANN)?

What is an Artificial
Neural Network (ANN)?

An ANN is a universal
function approximator

Deep Learning

AN ANN WITH MORE NEURONS AND MORE LAYERS

Networks

CLASSIFICATION

IMAGES RECOGNITION

Handwritten letters
Faces

AUDIO RECOGNITION

Speech

PATTERN RECOGNITION

Spam

Problems solved with Neural

CLUSTERING

GROUPING

Customers by similar
characteristics

Geographic distances
together for deliveries

REGRESSION

PREDICTION

Stock picking

Income based based on
location

airline passengers based
on the time of year

pinterest.com

Free shipping and returns on Theory Leather Bomber Rick Owens Leather Bomber Collar Parka

Burberry Brit 'Irwin'... Jacket Jacket

Mower Leather Bomber
Jacket

Pistel Whip Striped Hoodie

Reebok BOSS Black 'Cosey’ Trim Fit

Jacket available
at... #Nordstrom

CS2

> B Bl

CS ConvNetJS d... 12a:

@ cardiogram

©2018 Cardiogram, Inc.

@ @ cardiogr.am & 0

Neural... 3Blue1Brown... Thinking vis... tensorflow c... neural nets e... Frank Chen -... Cardiogram...

About Research For employers Blog

What's your heart telling you?

Your heart beats 102,000 times per day, and it reacts to everything that happens in your life

—what you're eating, how you exercise, a stressful moment, or a happy memory.

Download on the GET ITON
S App Store b\ Google Play

Game of Thrones Episode

09:30 PM 09:45 PM 10:00 PM

Privacy Terms of Use Support Contact us . 4

NEW YORRER

D.LY. ARTIFICIAL
INTELLIGENCE COMES TO A
JAPANESE FAMILY FARM

By Amos Zeeberg August 10, 2017 f . 4

For decades, Makoto Koike's mother has been sorting cucumbers by hand. Now bhe is trying to
teach a machine to replace her.

N ot much about Makoto Koike’s adult life suggests that he would be

a farmer. Trained as an engineer, he spent most of his career in a

busy urban section of Aichi Prefecture, Japan, near the headquarters of the

Toyota Motor Corporation, writing software to control cars. Koike’s

ANN Implementation Overview

STEP 1

Define the input

MODEL STEP 2

Define the topology of the neural net
(i.e., the layers of neurons and their connections)

STEP 3
Train the neural net on examples of the problem

TRAINING
THE MODEL STEP 4

Run the trained neural net to solve new examples
of the problem

INSTANCES

PROBLEM
DOMAIN

REPRESENTATION

PROBLEM
DATA

PROBLEM FORMULATION

ALGORITHMIC SOLUTION

r

COMPUTATIONAL
MODEL

~

ALGORITHM

RANGE OF

POSSIBLE ANSWERS

INTERPRETATION

RESULT

SOLUTION
INSTANCE

Learning

(e]

> lI
A

~
@
J

Deciding

(o]

| lI
A

~
@
J

Learning

(o]

Deciding

(o]

.
> o
S

INTRODUCTION DECIDING LEARNING CORRECTNESS

>

Decision Making

@ C
O —C

Decision Making

Decision Making

2D ARRAY
OF VALUES i

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

IMAGE

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

INPUT LAYER OF
NEURONS

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

MODEL: ANN
— _J

INPUT LAYER OF
NEURONS

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

()
O
O >
O
MODEL: ANN
_ W,
>
INPUT LAYER OF
FORWARD-

NEURONS
PROPAGATION

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

e D
o
o - o
.
MODEL: ANN
. y
>
INPUT LAYER OF OUTPUT
FORWARD-
NEURONS NEURON

PROPAGATION

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

e D
o
o - o
.
MODEL: ANN
. y
>
INPUT LAYER OF OUTPUT
FORWARD-
NEURONS NEURON

PROPAGATION

How does it work?

Biological Neuron Artificial Neuron

Biological Neuron Artificial Neuron

Biological Neuron Artificial Neuron

Y > OUTPUT

Artificial Neuron

WEIGHTS

A

X \
B
INPUTS Y > > OUTPUT
/C'

Artificial Neuron

WEIGHTS

O
e

XA + YB + ZC = OUTPUT

Artificial Neuron

WEIGHTS

O
e

o (XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

SIGMOID FUNCTION

INPUTS < X

Leneeme et + o (XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

O
e

S c(XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

RELU FUNCTION

INPUTS < X

Leneeme et + o (XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

RELU FUNCTION

INPUTS < X

S » R(XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

O
e

R (XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

O
e

R (XA + YB + ZC) = OUTPUT

Artificial Neuron

WEIGHTS

O
e

R (X A + YB + ZC + BIAS) = OUTPUT

Artificial Neuron

WEIGHTS

O
e

R (X A + YB + ZC + BIAS) = OUTPUT

Artificial Neuron

WEIGHTS

INPUTS > >

OUTPUT = ACTIVATION FUNCTION

R (X A + YB + ZC + BIAS)

Artificial Neuron

WEIGHTS

INPUTS > >

OUTPUT = ACTIVATION FUNCTION

R (X A + YB + ZC + BIAS)

Artificial Neuron

ACTIVATED NOT ACTIVATED

BASED ON THE INPUT VALUE, THE WEIGHTS, AND THE BIAS

Building the network

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

INPUT LAYER OF ANN

2D ARRAY OF
PIXEL VALUES

000000000 00)000I00,

INPUT LAYER OF ANN

’ r £

Y, =
f

2D ARRAY OF
PIXEL VALUES

000000000 00)000I00,

o O O O O O

HIDDEN LAYERS OF NEURONS

o O O O

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

2D ARRAY OF
PIXEL VALUES

000000000 00)000I00,
o O O O
O

o O O O O O

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

2D ARRAY OF
PIXEL VALUES

0010000000 00000I00,
o O O O
O

o O O O O O

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

2D ARRAY OF
PIXEL VALUES

00/0]00/0]0)0/0]0)0/0I0)00I®
o O O O O O
o O O O

WEIGHTED CONNECTIONS

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

(1\ SRLS 7 ”'/ Q ANDRE
OXRSET SO =0 >
O ROEIRA0K SO NS N
S — () ‘\\’4”0“ Y 5L O e
8 X ROEHRKX, 5 g@f’f Q X‘)v’:‘
XA AL IS \ £ '
Q .%:’3; ;é::’?;f?w RN Q i‘)‘g‘t}’ /‘i‘ Q RYAN
5 ’0{ 2’«,1}2 RA N X | A
s OB SR 0L/
O ZAELESR /AN
® o4l B Q ”' O BEN

WEIGHTED CONNECTIONS

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

{75 /
A" ; 10t
e X XL, . \

RN
R | \ Q ANDRE
O \ \K“:“%:?:S‘(282 “‘g" Q ‘
OsReea S XL =0O e
RS KKK
X 2R 4',.\‘/40&’»‘ \ V/ \ A} ‘ / ‘
Q@E o . /> > @ ‘ O KL
'0"0,4 PIARALL *N ‘\ / “ A
2D ARRAY OF LIPS XX (7 T HAEANX >SN
Q l”% %ﬁ QXN l/ V ‘
PIXEL VALUES q,,‘,;; /,';(3 \: | "“‘ Q ,'
> \ ’
8 IS ' I"‘ () e

— FORWARD-PROPAGATION —

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

{75 /
A" ; 10t
e X XL, . \

RN
R | \ Q ANDRE
O \ \K“:“%:?:S‘(282 “‘g" @ ‘
OsReea S XL =0O e
RS KKK
X 2R 4',.\‘/40&’»‘ \ V/ \ A} ‘ / ‘
Q@E o . /> > @ ‘ O KL
'0"0,4 PIARALL *N ‘\ / “ A
2D ARRAY OF LIPS XX (7 T HAEANX >SN
Q l”% %ﬁ QXN l/ V ‘
PIXEL VALUES q,,‘,;; /,';(3 \: | "“‘ @ ,'
> \ ’
8 IS ' I"‘ () e

— FORWARD-PROPAGATION —

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

{75 /
A" ; 10t
e X XL, . \

RN
R | \ @ ANDRE
O \ \K“:“%:?:S‘(282 “‘g" @ ‘
OsReea S XL @®
RS KKK
X 2R 4',.\‘/40&’»‘ \ V/ \ A} ‘ / ‘
Q@E o . /> > @ ‘ @ KL
'0"0,4 PIARALL *N ‘\ / “ A
2D ARRAY OF LIPS XX (7 T HAEANX >SN
Q l”% %ﬁ QXN l/ V ‘
PIXEL VALUES q,,‘,;; /,';(3 \: | "“‘ @ ,'
> \ ’
8 IS ' I"‘ @ =

— FORWARD-PROPAGATION —

Simplified Notation

o @W\
0,1

@/w//

a0 @ Wo,
0,

® ©® ©® @

Simplified Notation

©\©

ao(0)

Owop,o t a1®@wg1 + a20wpz2 + asz@wgs + asOwos + as@wpes + bias) = Output

® ©® ©® @

Simplified Notation

©\©

aol0)

Owop,o t a1®@wg1 + a20wpz2 + asz@wgs + asOwos + as@wpes + bias) = Output

® ©® ©® @

Simplified Notation

©\©

aol0)

ao@woo T ai@wg1 + a20wg2 *+ az@wgsz + as@wps + as@wps + bias) = Output

® ©® ©® @

Simplified Notation

©\©

ao®@woo T ai@wg1 + a20wg2 *+ az@wgsz + as@wps + as@wps + bias) = Output

Wo0,0 Wo0,1 Wo,2 W0,3 Wo0,4 W05 ao0)

Wk,0 Wk,1 Wk,2 Wk,3 Wk4 Wk,5 as(0)

® ©® ©® @

Simplified Notation

©\©

ao@woo T ai@wg1 + a20wg2 *+ az@wgsz + as@wps + as@wps + bias) = Output

Wo0,0 Wo0,1 Wo,2 W0,3 Wo0,4 W05 ao0)

Wk,0 Wk,1 Wk,2 Wk,3 Wk4 Wk,5 as(0)

® ©® ©® @

Simplified Notation

<:::>\\\\\““‘\\\\\\\\\“‘-\5

SIGMOID

@

® ©® ©® @

ao®wopo T a1@wg1

Wo0,0

Wk,0

Wo,1

Wk, 1

T a20wg 2

Wo,2

Wk,2

Wo,3

Wk,3

T+ a30wg 3

Wo,4

Wk, 4

Wo,5

Wk,5

T+ asOwps + asOwps +

b1

bn

bias)

Output

Simplified Notation

<:::>‘\\\\\\\\\\\\\\\5\\“‘-\5

SIGMOID

@

® ©® ©® @

ao®wopo T a1@wg1

—

Wo0,0

Wk,0

Wo,1

Wk, 1

T a20wg 2

Wo,2

Wk,2

Wo,3

Wk,3

T+ a30wg 3

Wo,4

Wk, 4

Wo,5

Wk,5

T+ asOwps + asOwps +

b1

bn

bias)

—

Output

Simplified Notation

<:::>‘\\\\\\\\\\\\\\\5\\“‘-\5

SIGMOID

@

® ©® ©® @

ao®wopo T a1@wg1

—

Wo0,0

Wk,0

Wo,1

Wk, 1

T a20wg 2

Wo,2

Wk,2

Wo,3

Wk,3

T+ a30wg 3

Wo,4

Wk, 4

Wo,5

Wk,5

T+ asOwps + asOwps +

b1

bn

bias)

—

Output

aol0)

Simplified Notation

©\

®

® ©® ©® @

Wo0,0

Wk,0

Wo,1

Wk, 1

Wo,2

Wk,2

Wo,3

Wk,3

Wo,4

Wk, 4

Wo,5

Wk,5

b1

bn

aol0)

Simplified Notation

Q\

®

® ©® ©® @

Wo,0 Wo,1

Wk,0 Wk,1

W a0

Wo,2 Wo0,3 W0o0,4 WQ0,5

Wk,2 Wk,3 Wk,4 WKk,5

b1

bn

Simplified Notation

W a0 + B

W00 Wo0,1 Wo2 W03 W04 WO0,5 ao'

Wk,0 Wk,1 Wk,2 Wk,3 Wk,4 Wk,5 as

Simplified Notation

Wo,0 Wo,1

Wk,0 Wk,1 Wk,2 Wk,3 Wk,4 Wk,5

Wo,2 Wo0,3 W0o0,4 WQ0,5

b1

Simplified Notation

aol0)

@\© o(Wa® + B)

class Network(object):
def (self *args, **kwargs)

. . yada vyadaa, Inittialize we 1(:;'!’ CS dand pliLases..

def i(self, a):
"""Return the output of the network for an input vector a
for b, w in zip(self.biases, self.weights):
sigmoid(np.dot(w, a) + b)
return af

® ©® ©® @

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

{75 /
A" ; 10t
e X XL, . \

RN
R | \ @ ANDRE
O \ \K“:“%:?:S‘(282 “‘g" @ ‘
OsReea S XL @®
RS KKK
X 2R 4',.\‘/40&’»‘ \ V/ \ A} ‘ / ‘
Q@E o . /> > @ ‘ @ KL
'0"0,4 PIARALL *N ‘\ / “ A
2D ARRAY OF LIPS XX (7 T HAEANX >SN
Q l”% %ﬁ QXN l/ V ‘
PIXEL VALUES q,,‘,;; /,';(3 \: | "“‘ @ ,'
> \ ’
8 IS ' I"‘ @ ==

— FORWARD-PROPAGATION —

Larger Neural Networks can represent
more complicated functions.

3 6 20

HIDDEN NEURONS HIDDEN NEURONS HIDDEN NEURONS

Decision Making

GIVEN AN IMAGE, DECIDE WHO
IT IS FROM A SET OF PEOPLE

e D
o
o - o
.
MODEL: ANN
. y
>
INPUT LAYER OF OUTPUT
FORWARD-
NEURONS NEURON

PROPAGATION

Deciding

(k-

(D=

Learning

>

&

—

o ®
o ® ®
o o
\4
-
.

Deciding

® o
®
A
\4
o

(HHTF

(D=

INTRODUCTION DECIDING LEARNING CORRECTNESS

>

ANN Implementation Overview

STEP 1
Define the input

MODEL STEP 2

Define the topology of the neural net
(i.e., the layers of neurons and their connections)

STEP &
Train the neural net on examples of the problem

TRAINING
THE MODEL STEP 4

Run the trained neural net to solve new examples
of the problem

Learning

9 O
Q . - Q

TRAINING DATA Lea rning

\ /| BUCKET OF MODELS

MODEL

NORMS (COST FUNCTION) INSTANCE

\ .

TRAINING DATA Lea rning

\ |/ BUCKET OF MODELS
NORMS (COST FUNCTION)

MODEL
INSTANCE

TRAINING DATA Lea rning

\ /| BUCKET OF MODELS

MODEL

NORMS (COST FUNCTION) INSTANCE

NORMS (COST FUNCTION)
INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS

. OUTPUT DESIRED

Q . VALUE RESULT
@ -

@ @©@ @ @
@

000000000 00)0]00)0)0,
@ ®©@ @ @ @ @

Cost Function

Looks at the outputs generated by the
neural net and compares it to what the
results should be

Eiotar = Y 5 (target — output)?

Learning step

A neural net that produces an answer Minimum
close to the desired answer will have a

lower cost

Random
initial value
Find which weights and biases will
minimize the cost function output,
known as gradient descent

TRAINING DATA Lea rning

\ /| BUCKET OF MODELS

MODEL

NORMS (COST FUNCTION) INSTANCE

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA
ACCORDING TO OUR NORM

TRAINING DATA Lea rning

\ |/ BUCKET OF MODELS
NORMS (COST FUNCTION)

MODEL
INSTANCE

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA
ACCORDING TO OUR NORM

ANN WITH INITIAL
WEIGHTS

TRAINING DATA Lea rning

\ |/ BUCKET OF MODELS
NORMS (COST FUNCTION)

MODEL
INSTANCE

FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA
ACCORDING TO OUR NORM

ANN WITH INITIAL
WEIGHTS

BACK-
PROPAGATION

Sums up the total cost of each output:

Etotal = 2 %(t‘f‘"”!] et — output)?

Computes partial derivatives of of the total cost

function with respect to any weight w or bias b in the
network.

Applies small changes to the weights and biases in
each layer.

Automatically adjusts the weights between each set of
data. No manual tuning required

TRAINING DATA Lea rning

\ /| BUCKET OF MODELS MODEL
NORMS (COST FUNCTION) INSLANISIE
FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA
ACCORDING TO OUR NORM
>
A
\ 4
()
>
_ _J
<
ANN WITH INITIAL Ak ANN WITH TUNED
WEIGHTS WEIGHTS

PROPAGATION

Using Evolutionary Algorithms in ANNs

Generate population of n random initial sets of weights and biases.
Known as species.

Initialization

Evaluate the fithess of each species in that population Mutation

(time limit, lowest cost achieved, etc.)
Selection

Crossover

o

Select the best-fit individuals for reproduction. (Parents)
b. Breed a new generation of new species Termination
through crossover and mutation.

Evaluate the individual fitness of new individuals.
d. Replace least-fit population with new individuals.

2

https://en.wikipedia.org/wiki/Fitness_function

Learning

>

&

—

o ®
o ® ®
o o
\4
-
.

Deciding

® o
®
A
\4
o

(HHTF

(D=

INTRODUCTION

DECIDING

LEARNING

CORRECTNESS

Learning Deciding

@
O

o O
O O

TRAINING DATA
\ |/ BUCKET OF MODELS

NORMS (COST FUNCTION)

- f(X)
A
v v
4)
= % | &2
_ J
<
ANN WITH INITIAL BACK ANN WITH TUNED
WEIGHTS WEIGHTS

PROPAGATION

TRAINING DATA
\ |/ BUCKET OF MODELS

NORMS (COST FUNCTION)

| fX)
A A
v v
(") (")
- J - v,
< >
OUTPUT
ANN WITH INITIAL BACK- ANN WITH TUNED EORWARD-
WEIGHTS WEIGHTS NEURON

PROPAGATION PROPAGATION

TRAINING DATA
\ |/ BUCKET OF MODELS

NORMS (COST FUNCTION)

|

CORRECTNESS

| |

ANN WITH INITIAL
WEIGHTS

BACK-
PROPAGATION

- f(X)
A CORRECTNESS A
\4 l
(")
(8= & -
- _J
>
TPUT
ANN WITH TUNED EORWARD- OUTPU
WEIGHTS NEURON

PROPAGATION

TRAINING DATA
\ |/ BUCKET OF MODELS

NORMS (COST FUNCTION)

|

CORRECTNESS

| |

ANN WITH INITIAL
WEIGHTS

BACK-
PROPAGATION

- f(X)
A CORRECTNESS A
\4 l
(")
(8= & -
- _J
>
TPUT
ANN WITH TUNED EORWARD- OUTPU
WEIGHTS NEURON

PROPAGATION

From this a skeleton can be extracted

From this a skeleton can be extracted

A feed-forward network with a single
hidden layer containing a finite number of
neurons can approximate continuous
functions on compact subsets of R, under
mild assumptions on the activation
function.

Universal approximation theorem

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS

OUTPUT

77 \ @
NS> = 777/

WHY B \0,0!;,,,, ’

“‘3&:3%?‘5‘{ o ‘V’V‘

\ \\\ 3 ' : @

o,
L
20759%,
G535

¢

@
VS
‘3‘(
W
e
'

41
KX

@
@

@
X
'/1
X
V‘
¥

S LOANESE AR SNy , ‘
< PRIDEFOK NS

L S7078 025 K §\‘:\“§\/ ' A N\
" /" WN

Al
VOAX

’2?5‘
2285
Y
Ny
AR
\’4 7
O
()

SR AN
5 E KR RE SRR

ANDRE

GAVIN

RYAN

BEN

The theorem in mathematical terms:

Let go() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,,, denote the
m-dimensional unit hypercube |0, 1]™. The space of continuous functions on I,,, is denoted by C'(I,,,).
Then, given any £ > 0 and any function f € C(I,,), there exist an integer N, real constants v;,b; € R
and real vectors w; € R™, where 1 = 1,---, N, such that we may define:

N

F(z) Z vip (w! z + b;)

1=1

as an approximate realization of the function f where f is independent of o; that is,

F(z) - f(z)| <e

for all x € I,,. In other words, functions of the form F'(z) are dense in C(I,,).

UAT AND ANN CORRECTNESS SIMPLIFIED

Any continuous function can be
approximated by an ANN with a finite
number of neurons

WHAT WE LEARN FROM ANN CORRECTNESS

A correct result can’t be guaranteed
A ‘Good’ result is guaranteed to be
possible

Universal approximation theorem

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS

OUTPUT

s
(’\“t\‘ /1//,
P
)

&
X
X
v R/
s
3,:
N
Y
Z

%

S N\
LV ;“‘ < 54‘)(‘ ‘/“ ‘/4 }/4 7
N

o
A\ 5\?\‘5

®

%

X
K
N

®@ @

"

‘:\]
X
\

N/

%

L
A
v, ‘\'
A XIS XY
Y XN O
SO VNN @ '/ \é“ <7 <\
N 2T N5 A W X
e AN SR P
L RS ERINI L/
BRI AN
&S SR
\J

D

»S&v s~ \

QRRY

N

QDB

’»4 NN

KBRS

G ss

99555 XK

//;/’ ”:0‘ \‘Qtofo,o 2 \“Qi\’o‘
7 % /// X5 \ ~.~\

0

“A feedforward network with a single layer is sufficient to

represent any function, but the layer may be infeasibly
large and may fail to learn and generalize correctly.”

— lan Goodfellow

Resour

e Tensor Flow

e Pytorch

e MXNet

e Caffe

e Theano

e Amazon Machine Learning

TensorFIOW ™ Install Develop API 1.8

i GET STARTED

TensorFlow 1.8 has arrived!

We're excited to announce the release of
TensorFlow 1.8! Check out the announcement to
upgrade your code with ease.

LEARN MORE

About TensorFlow

tensorflow.org

Deploy Extend Community Versions

)L

TensorFlow Dev Summit 2018

Thousands of people from the TensorFlow
community participated in the second TensorFlow
Dev Summit. Watch the keynote and talks now.

WATCH NOW

TensorFlow™ is an open source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation
across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters
of servers to mobile and edge devices. Originally developed by researchers and
engineers from the Google Brain team within Google’s Al organization, it comes

Announcing TensorFlow,s!

Learn more about our new library for machine
learning in the browser using JavaScript.

LEARN MORE

APPENDIX

"Little more than speculation and wishful thinking ties
the actual work in Al to the mysterious workings of
the human mind.”

—Jerry Kaplan, an Al professor at Stanford University

Comparison between ANNs and Brains

Human-built networks prioritize mathematical elegance and power. Brains do not.

One neuron in the brain is as complex as a supercomputer

Number of neurons in the brain is roughly equivalent to number of stars in the galaxy
(about 85 Billion) Each Neuron is wired to 1000 others. About 85 trillion connections
synapses.

ANN researchers typically ignore biophysics

Biological Neuron Artificial Neuron
Network Network

Purely feedforward. Brains contain feedback Can apply back-propagation
connections in various directions, but each on
his strictly one-way

Number of neurons in the brain is roughly
equivalent to number of stars in the galaxy

(about 100 Billion)

Each Neuron is wired to 1000 others. About 100
trillion connections (synapses)

Top-down
organization

Where the computational procedure is
constructed according to some well-
defined and clearly understood
computational procedure, where this
procedure provides a clear cut solution
to some problem at hand. (Euclid’s
Algorithm)

AKA GOFAI

Bottom-up
organization

Clearly defined rules are not specified
In advance, but instead there is a
procedure laid down for the way that
the system is to ‘learn’ and to improve
Its performance according to its
‘experience”. Thus the rules are subject
to continual modification. (Comparing

results of algorithm to correct answers
as in ANNs)

NOUVELLE Al

Parallel Architecture

Serial Architecture

STEP-BY STEP DOES MANY INDEPENDENT
COMPUTATIONS SIMULTANEOUSLY.

&
O—O—O @>

7

O

For every function there exists an ANN
with some hidden layer that approximates
that function.

Assumes that you can have an infinite
number of neurons.

We know of no way of determining the
Model of the hidden layers in the neural
networks.

Universal approximation theorem

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS

OUTPUT

ANDRE

N —@

O
Ni\‘\i\\\
;
XX
N
®
r«%«‘
.y

X):\\"Iﬁ XS
ISR I R
AV SR XI5
SOX XK X HKRE
Za\
oA

S,
X20A

)
>

\!

N
A

$XH

Y
@
,':

)

e

X
b/ 3""0

Y%
s
D

.
9%

@
7
5

@
@

0N
&K
=\
N
RS

X % @ \A;“ . ’\. ‘
X - :A':?‘E:::“‘:r:?“ @ '/ . "‘ RYAN

‘4\ /A]‘A"li A0

O SRR L
LALLISINNN N
25 PRI YN\
SLTHIA ZISINIK \
&/

ZA
N R
7 K&

N\

s~ Q ’Q‘ V4

(2

Z/
N
¢
Ny
)

BEN

