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What is an Artificial
Neural Network (ANN)?

An ANN is a universal
function approximator




Deep Learning

AN ANN WITH MORE NEURONS AND MORE LAYERS
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D.LY. ARTIFICIAL
INTELLIGENCE COMES TO A
JAPANESE FAMILY FARM

By Amos Zeeberg August 10, 2017 f . 4

For decades, Makoto Koike's mother has been sorting cucumbers by hand. Now bhe is trying to
teach a machine to replace her.

N ot much about Makoto Koike’s adult life suggests that he would be

a farmer. Trained as an engineer, he spent most of his career in a

busy urban section of Aichi Prefecture, Japan, near the headquarters of the

Toyota Motor Corporation, writing software to control cars. Koike’s









ANN Implementation Overview

STEP 1

Define the input

MODEL STEP 2

Define the topology of the neural net
(i.e., the layers of neurons and their connections)

STEP 3
Train the neural net on examples of the problem

TRAINING
THE MODEL STEP 4

Run the trained neural net to solve new examples
of the problem
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Decision Making
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IT IS FROM A SET OF PEOPLE
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How does it work?
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class Network(object):
def (self *args, **kwargs)

. . yada vyadaa, Inittialize we 1(:;'!’ CS dand pliLases..

def i(self, a):
"""Return the output of the network for an input vector a
for b, w in zip(self.biases, self.weights):
sigmoid(np.dot(w, a) + b)
return af

® ©® ©® @




INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS OUTPUT

{75 /
A" ; 10t
e X XL, . \

RN
R | \ @ ANDRE
O \ \K“:“%:?:S‘( 282 “‘g" @ ‘
OsReea S XL @®
RS KKK
X 2R 4',.\‘/40&’»‘ \ V/ \ A} ‘ / ‘
Q@E o . /> > @ ‘ @ KL
'0"0,4 PIARALL *N ‘\ / “ A
2D ARRAY OF LIPS XX (7 T HAEANX >SN
Q l”% %ﬁ QXN l/ V ‘
PIXEL VALUES q,,‘,;; /,';( 3 \: | "“‘ @ ,'
> \ ’
8 IS ' I"‘ @ ==

— FORWARD-PROPAGATION —




Larger Neural Networks can represent
more complicated functions.
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ANN Implementation Overview

STEP 1
Define the input

MODEL STEP 2

Define the topology of the neural net
(i.e., the layers of neurons and their connections)

STEP &
Train the neural net on examples of the problem

TRAINING
THE MODEL STEP 4

Run the trained neural net to solve new examples
of the problem
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Cost Function

Looks at the outputs generated by the
neural net and compares it to what the
results should be

Eiotar = Y 5 (target — output)?

Learning step

A neural net that produces an answer Minimum
close to the desired answer will have a

lower cost

Random
initial value
Find which weights and biases will
minimize the cost function output,
known as gradient descent
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Sums up the total cost of each output:

Etotal = 2 %(t‘f‘"”!] et — output)?

Computes partial derivatives of of the total cost

function with respect to any weight w or bias b in the
network.

Applies small changes to the weights and biases in
each layer.

Automatically adjusts the weights between each set of
data. No manual tuning required



TRAINING DATA Lea rning

\ /| BUCKET OF MODELS MODEL
NORMS (COST FUNCTION) INSLANISIE
FIND THE MODEL INSTANCE FROM OUR BUCKET
OF MODELS THAT BEST FITS OUR DATA
ACCORDING TO OUR NORM
>
A
\ 4
( )
>
\_ _J
<
ANN WITH INITIAL Ak ANN WITH TUNED
WEIGHTS WEIGHTS

PROPAGATION



Using Evolutionary Algorithms in ANNs

Generate population of n random initial sets of weights and biases.
Known as species.

Initialization

Evaluate the fithess of each species in that population Mutation

(time limit, lowest cost achieved, etc.)
Selection

Crossover

o

Select the best-fit individuals for reproduction. (Parents)
b. Breed a new generation of new species Termination
through crossover and mutation.

Evaluate the individual fitness of new individuals.
d. Replace least-fit population with new individuals.

2



https://en.wikipedia.org/wiki/Fitness_function
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A feed-forward network with a single
hidden layer containing a finite number of
neurons can approximate continuous
functions on compact subsets of R, under
mild assumptions on the activation
function.

Universal approximation theorem
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The theorem in mathematical terms:

Let go() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,,, denote the
m-dimensional unit hypercube |0, 1]™. The space of continuous functions on I,,, is denoted by C'(I,,, ).
Then, given any £ > 0 and any function f € C(I,,), there exist an integer N, real constants v;,b; € R
and real vectors w; € R™, where 1 = 1,---, N, such that we may define:

N

F(z) Z vip (w! z + b;)

1=1

as an approximate realization of the function f where f is independent of o; that is,

F(z) - f(z)| <e

for all x € I,,. In other words, functions of the form F'(z) are dense in C(I,,).




UAT AND ANN CORRECTNESS SIMPLIFIED

Any continuous function can be
approximated by an ANN with a finite
number of neurons

WHAT WE LEARN FROM ANN CORRECTNESS

A correct result can’t be guaranteed
A ‘Good’ result is guaranteed to be
possible

Universal approximation theorem
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“A feedforward network with a single layer is sufficient to

represent any function, but the layer may be infeasibly
large and may fail to learn and generalize correctly.”

— lan Goodfellow
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e Tensor Flow

e Pytorch

e MXNet

e Caffe

e Theano

e Amazon Machine Learning

TensorFIOW ™ Install Develop API 1.8

i GET STARTED

TensorFlow 1.8 has arrived!

We're excited to announce the release of
TensorFlow 1.8! Check out the announcement to
upgrade your code with ease.

LEARN MORE

About TensorFlow

tensorflow.org

Deploy Extend Community Versions

)L

TensorFlow Dev Summit 2018

Thousands of people from the TensorFlow
community participated in the second TensorFlow
Dev Summit. Watch the keynote and talks now.

WATCH NOW

TensorFlow™ is an open source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation
across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters
of servers to mobile and edge devices. Originally developed by researchers and
engineers from the Google Brain team within Google’s Al organization, it comes

Announcing TensorFlow,s!

Learn more about our new library for machine
learning in the browser using JavaScript.

LEARN MORE
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"Little more than speculation and wishful thinking ties
the actual work in Al to the mysterious workings of
the human mind.”

—Jerry Kaplan, an Al professor at Stanford University



Comparison between ANNs and Brains

Human-built networks prioritize mathematical elegance and power. Brains do not.

One neuron in the brain is as complex as a supercomputer

Number of neurons in the brain is roughly equivalent to number of stars in the galaxy
(about 85 Billion) Each Neuron is wired to 1000 others. About 85 trillion connections
synapses.

ANN researchers typically ignore biophysics



Biological Neuron Artificial Neuron
Network Network

Purely feedforward. Brains contain feedback Can apply back-propagation
connections in various directions, but each on
his strictly one-way

Number of neurons in the brain is roughly
equivalent to number of stars in the galaxy

(about 100 Billion)

Each Neuron is wired to 1000 others. About 100
trillion connections (synapses)



Top-down
organization

Where the computational procedure is
constructed according to some well-
defined and clearly understood
computational procedure, where this
procedure provides a clear cut solution
to some problem at hand. (Euclid’s
Algorithm)

AKA GOFAI

Bottom-up
organization

Clearly defined rules are not specified
In advance, but instead there is a
procedure laid down for the way that
the system is to ‘learn’ and to improve
Its performance according to its
‘experience”. Thus the rules are subject
to continual modification. (Comparing

results of algorithm to correct answers
as in ANNs)

NOUVELLE Al



Parallel Architecture

Serial Architecture

STEP-BY STEP DOES MANY INDEPENDENT
COMPUTATIONS SIMULTANEOUSLY.
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For every function there exists an ANN
with some hidden layer that approximates
that function.

Assumes that you can have an infinite
number of neurons.

We know of no way of determining the
Model of the hidden layers in the neural
networks.

Universal approximation theorem

INPUT LAYER OF ANN HIDDEN LAYERS OF NEURONS
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